These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36151506)
41. Evaluation of Assays to Quantify Infectious Human Norovirus for Heat and High-Pressure Inactivation Studies Using Tulane Virus. Li X; Huang R; Chen H Food Environ Virol; 2017 Sep; 9(3):314-325. PubMed ID: 28238030 [TBL] [Abstract][Full Text] [Related]
42. Alternative methods to determine infectivity of Tulane virus: a surrogate for human nororvirus. Xu S; Wang D; Yang D; Liu H; Tian P Food Microbiol; 2015 Jun; 48():22-7. PubMed ID: 25790987 [TBL] [Abstract][Full Text] [Related]
43. Recovery Optimization and Survival of the Human Norovirus Surrogates Feline Calicivirus and Murine Norovirus on Carpet. Buckley D; Fraser A; Huang G; Jiang X Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864657 [TBL] [Abstract][Full Text] [Related]
44. Interaction of microorganisms within leafy green phyllospheres: Where do human noroviruses fit in? Deng W; Gibson KE Int J Food Microbiol; 2017 Oct; 258():28-37. PubMed ID: 28755583 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of Copper Alloy Surfaces for Inactivation of Tulane Virus and Human Noroviruses. Recker JD; Li X J Food Prot; 2020 Oct; 83(10):1782-1788. PubMed ID: 32991723 [TBL] [Abstract][Full Text] [Related]
46. The fate of murine norovirus and hepatitis A virus during preparation of fresh produce by cutting and grating. Wang Q; Erickson M; Ortega YR; Cannon JL Food Environ Virol; 2013 Mar; 5(1):52-60. PubMed ID: 23412721 [TBL] [Abstract][Full Text] [Related]
47. Effect of Plant-Derived Proteases on Infectivity of Tulane Virus, Murine Norovirus, and Hepatitis A Virus. Shearer AEH; Kniel KE J Food Prot; 2021 Mar; 84(3):418-423. PubMed ID: 33125048 [TBL] [Abstract][Full Text] [Related]
48. Inactivation of human norovirus surrogates by benzalkonium chloride, potassium peroxymonosulfate, tannic acid, and gallic acid. Su X; D'Souza DH Foodborne Pathog Dis; 2012 Sep; 9(9):829-34. PubMed ID: 22897744 [TBL] [Abstract][Full Text] [Related]
49. Pulsed light inactivation of murine norovirus, Tulane virus, Escherichia coli O157:H7 and Salmonella in suspension and on berry surfaces. Huang Y; Ye M; Cao X; Chen H Food Microbiol; 2017 Feb; 61():1-4. PubMed ID: 27697158 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of murine norovirus as a surrogate for human norovirus and hepatitis A virus in heat inactivation studies. Hewitt J; Rivera-Aban M; Greening GE J Appl Microbiol; 2009 Jul; 107(1):65-71. PubMed ID: 19298511 [TBL] [Abstract][Full Text] [Related]
51. Thermal Inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica). Araud E; DiCaprio E; Ma Y; Lou F; Gao Y; Kingsley D; Hughes JH; Li J Appl Environ Microbiol; 2016 Jan; 82(7):2086-99. PubMed ID: 26826225 [TBL] [Abstract][Full Text] [Related]
52. Measuring transfer of human norovirus during sandwich production: Simulating the role of food, food handlers and the environment. Derrick J; Hollinghurst P; O'Brien S; Elviss N; Allen DJ; Iturriza-Gómara M Int J Food Microbiol; 2021 Jun; 348():109151. PubMed ID: 33940535 [TBL] [Abstract][Full Text] [Related]
53. Method validation for norovirus detection in naturally contaminated irrigation water and fresh produce. El-Senousy WM; Costafreda MI; Pintó RM; Bosch A Int J Food Microbiol; 2013 Oct; 167(1):74-9. PubMed ID: 23866911 [TBL] [Abstract][Full Text] [Related]
54. Comparing human norovirus surrogates: murine norovirus and Tulane virus. Hirneisen KA; Kniel KE J Food Prot; 2013 Jan; 76(1):139-43. PubMed ID: 23317870 [TBL] [Abstract][Full Text] [Related]
55. Comparison of the growth of Escherichia coli O157: H7 and O104: H4 during sprouting and microgreen production from contaminated radish seeds. Xiao Z; Nou X; Luo Y; Wang Q Food Microbiol; 2014 Dec; 44():60-3. PubMed ID: 25084646 [TBL] [Abstract][Full Text] [Related]
56. Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin. Patwardhan M; Morgan MT; Dia V; D'Souza DH Food Microbiol; 2020 Sep; 90():103461. PubMed ID: 32336357 [TBL] [Abstract][Full Text] [Related]
57. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees. Huang R; Ye M; Li X; Ji L; Karwe M; Chen H Int J Food Microbiol; 2016 Apr; 223():17-24. PubMed ID: 26874862 [TBL] [Abstract][Full Text] [Related]
58. Norovirus transmission between hands, gloves, utensils, and fresh produce during simulated food handling. Rönnqvist M; Aho E; Mikkelä A; Ranta J; Tuominen P; Rättö M; Maunula L Appl Environ Microbiol; 2014 Sep; 80(17):5403-10. PubMed ID: 24951789 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of Steady-State Gaseous Chlorine Dioxide Treatment for the Inactivation of Tulane virus on Berry Fruits. Kingsley DH; Annous BA Food Environ Virol; 2019 Sep; 11(3):214-219. PubMed ID: 30949936 [TBL] [Abstract][Full Text] [Related]
60. Swabs as a tool for monitoring the presence of norovirus on environmental surfaces in the food industry. Rönnqvist M; Rättö M; Tuominen P; Salo S; Maunula L J Food Prot; 2013 Aug; 76(8):1421-8. PubMed ID: 23905799 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]