These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 36151561)
1. Factors leading to falls in transfemoral prosthesis users: a case series of sound-side stumble recovery responses. Eveld ME; King ST; Zelik KE; Goldfarb M J Neuroeng Rehabil; 2022 Sep; 19(1):101. PubMed ID: 36151561 [TBL] [Abstract][Full Text] [Related]
2. Factors leading to falls in transfemoral prosthesis users: a case series of prosthesis-side stumble recovery responses. King ST; Eveld ME; Zelik KE; Goldfarb M J Neuroeng Rehabil; 2024 Jul; 21(1):117. PubMed ID: 39003469 [TBL] [Abstract][Full Text] [Related]
3. Transfemoral amputee recovery strategies following trips to their sound and prosthesis sides throughout swing phase. Shirota C; Simon AM; Kuiken TA J Neuroeng Rehabil; 2015 Sep; 12():79. PubMed ID: 26353775 [TBL] [Abstract][Full Text] [Related]
4. Task-specific fall prevention training is effective for warfighters with transtibial amputations. Kaufman KR; Wyatt MP; Sessoms PH; Grabiner MD Clin Orthop Relat Res; 2014 Oct; 472(10):3076-84. PubMed ID: 24811543 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of stumble recovery assistance in a knee exoskeleton for individuals with simulated mobility impairment: A pilot study. Eveld ME; King ST; Zelik KE; Goldfarb M Wearable Technol; 2023; 4():e22. PubMed ID: 38510587 [TBL] [Abstract][Full Text] [Related]
6. Trip recoveries of people with unilateral, transfemoral or knee disarticulation amputations: Initial findings. Crenshaw JR; Kaufman KR; Grabiner MD Gait Posture; 2013 Jul; 38(3):534-6. PubMed ID: 23369663 [TBL] [Abstract][Full Text] [Related]
7. Relating minimum toe clearance to prospective, self-reported, trip-related stumbles in the community. Rosenblatt NJ; Bauer A; Grabiner MD Prosthet Orthot Int; 2017 Aug; 41(4):387-392. PubMed ID: 27280640 [TBL] [Abstract][Full Text] [Related]
8. A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery. King ST; Eveld ME; Martínez A; Zelik KE; Goldfarb M J Neuroeng Rehabil; 2019 Jun; 16(1):69. PubMed ID: 31182126 [TBL] [Abstract][Full Text] [Related]
9. Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation? Aldridge Whitehead JM; Wolf EJ; Scoville CR; Wilken JM Clin Orthop Relat Res; 2014 Oct; 472(10):3093-101. PubMed ID: 24515402 [TBL] [Abstract][Full Text] [Related]
10. An Experimental Approach to Induce Trips in Lower-Limb Amputees. Rodacki ALF; Buckley JG; Passos de Oliveira AC; Marçal da Silva R; Bertoli Nascimento V J Vis Exp; 2023 Sep; (199):. PubMed ID: 37811948 [TBL] [Abstract][Full Text] [Related]
11. Stumble detection and classification for an intelligent transfemoral prosthesis. Lawson BE; Atakan Varol H; Sup F; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():511-4. PubMed ID: 21095656 [TBL] [Abstract][Full Text] [Related]
12. Center-of-Mass Based foot Placement in Stumble Recovery. Eveld M; van der Kooij H; King S; Goldfarb M; Zelik K; van Asseldonk E IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941231 [TBL] [Abstract][Full Text] [Related]
13. Compensatory-step training of healthy, mobile people with unilateral, transfemoral or knee disarticulation amputations: A potential intervention for trip-related falls. Crenshaw JR; Kaufman KR; Grabiner MD Gait Posture; 2013 Jul; 38(3):500-6. PubMed ID: 23433547 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints. Andrysek J; García D; Rozbaczylo C; Alvarez-Mitchell C; Valdebenito R; Rotter K; Wright FV Prosthet Orthot Int; 2020 Oct; 44(5):314-322. PubMed ID: 32389076 [TBL] [Abstract][Full Text] [Related]
15. Sprint kinematics of athletes with lower-limb amputations. Buckley JG Arch Phys Med Rehabil; 1999 May; 80(5):501-8. PubMed ID: 10326911 [TBL] [Abstract][Full Text] [Related]
16. Towards design of a stumble detection system for artificial legs. Zhang F; D'Andrea SE; Nunnery MJ; Kay SM; Huang H IEEE Trans Neural Syst Rehabil Eng; 2011 Oct; 19(5):567-77. PubMed ID: 21859635 [TBL] [Abstract][Full Text] [Related]
17. Using a Simple Walking Model to Optimize Transfemoral Prostheses for Prosthetic Limb Stability-A Preliminary Study. Pace A; Howard D; Gard SA; Major MJ IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3005-3012. PubMed ID: 33275584 [TBL] [Abstract][Full Text] [Related]
18. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users. Pinhey SR; Murata H; Hisano G; Ichimura D; Hobara H; Major MJ J Biomech; 2022 Mar; 134():110984. PubMed ID: 35182901 [TBL] [Abstract][Full Text] [Related]
19. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
20. Strategies for recovery from a trip in early and late swing during human walking. Eng JJ; Winter DA; Patla AE Exp Brain Res; 1994; 102(2):339-49. PubMed ID: 7705511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]