These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36151744)

  • 1. DGHNE: network enhancement-based method in identifying disease-causing genes through a heterogeneous biomedical network.
    He B; Wang K; Xiang J; Bing P; Tang M; Tian G; Guo C; Xu M; Yang J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36151744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing an integrated gene similarity network for the identification of disease genes.
    Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting disease-related genes using integrated biomedical networks.
    Peng J; Bai K; Shang X; Wang G; Xue H; Jin S; Cheng L; Wang Y; Chen J
    BMC Genomics; 2017 Jan; 18(Suppl 1):1043. PubMed ID: 28198675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous network embedding for identifying symptom candidate genes.
    Yang K; Wang N; Liu G; Wang R; Yu J; Zhang R; Chen J; Zhou X
    J Am Med Inform Assoc; 2018 Nov; 25(11):1452-1459. PubMed ID: 30357378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and validation of HOXD3 and UNC5C as molecular signatures in keloid based on weighted gene co-expression network analysis.
    Wang H; Zhou Z; Liu Y; Wang P; Chen L; Qi S; Xie J; Tang J
    Genomics; 2022 Jul; 114(4):110403. PubMed ID: 35709926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities.
    Fernando PC; Mabee PM; Zeng E
    BMC Bioinformatics; 2020 Oct; 21(1):442. PubMed ID: 33028186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A network embedding model for pathogenic genes prediction by multi-path random walking on heterogeneous network.
    Xu B; Liu Y; Yu S; Wang L; Dong J; Lin H; Yang Z; Wang J; Xia F
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):188. PubMed ID: 31865919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Disease Related microRNA Based on Similarity and Topology.
    Chen Z; Wang X; Gao P; Liu H; Song B
    Cells; 2019 Nov; 8(11):. PubMed ID: 31703479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association.
    Cheng L; Li J; Ju P; Peng J; Wang Y
    PLoS One; 2014; 9(6):e99415. PubMed ID: 24932637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
    Le DH; Dao LTM
    J Mol Biol; 2018 Jul; 430(15):2219-2230. PubMed ID: 29758261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PrGeFNE: Predicting disease-related genes by fast network embedding.
    Xiang J; Zhang NR; Zhang JS; Lv XY; Li M
    Methods; 2021 Aug; 192():3-12. PubMed ID: 32610158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia.
    Liu K; Fu Q; Liu Y; Wang C
    Biosci Rep; 2019 Sep; 39(9):. PubMed ID: 31416885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational method based on the integration of heterogeneous networks for predicting disease-gene associations.
    Guo X; Gao L; Wei C; Yang X; Zhao Y; Dong A
    PLoS One; 2011; 6(9):e24171. PubMed ID: 21912671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network.
    Yao X; Hao H; Li Y; Li S
    BMC Syst Biol; 2011 May; 5():79. PubMed ID: 21599985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.
    Li Y; Patra JC
    Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations.
    Lei X; Fang Z; Chen L; Wu FX
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.