BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36151923)

  • 1. Integrative analysis in Pinus revealed long-term heat stress splicing memory.
    Roces V; Lamelas L; Valledor L; Carbó M; Cañal MJ; Meijón M
    Plant J; 2022 Nov; 112(4):998-1013. PubMed ID: 36151923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-mRNA alternative splicing as a modulator for heat stress response in plants.
    Ling Y; Mahfouz MM; Zhou S
    Trends Plant Sci; 2021 Nov; 26(11):1153-1170. PubMed ID: 34334317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming coupled to epigenetic regulation.
    Lamelas L; Valledor L; Escandón M; Pinto G; Cañal MJ; Meijón M
    J Exp Bot; 2020 Mar; 71(6):2040-2057. PubMed ID: 31781741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermopriming triggers splicing memory in Arabidopsis.
    Ling Y; Serrano N; Gao G; Atia M; Mokhtar M; Woo YH; Bazin J; Veluchamy A; Benhamed M; Crespi M; Gehring C; Reddy ASN; Mahfouz MM
    J Exp Bot; 2018 Apr; 69(10):2659-2675. PubMed ID: 29474581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal.
    Haider S; Raza A; Iqbal J; Shaukat M; Mahmood T
    Mol Biol Rep; 2022 Jun; 49(6):5771-5785. PubMed ID: 35182323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STABILIZED1 as a heat stress-specific splicing factor in Arabidopsis thaliana.
    Kim GD; Yoo SD; Cho YH
    Plant Signal Behav; 2018 Feb; 13(2):e1432955. PubMed ID: 29381447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changing Temperature Conditions during Somatic Embryo Maturation Result in
    Sales E; Cañizares E; Pereira C; Pérez-Oliver MA; Nebauer SG; Pavlović I; Novák O; Segura J; Arrillaga I
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique and contrasting effects of light and temperature cues on plant transcriptional programs.
    Jarad M; Antoniou-Kourounioti R; Hepworth J; Qüesta JI
    Transcription; 2020; 11(3-4):134-159. PubMed ID: 33016207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress.
    Wu W; Zhu S; Xu L; Zhu L; Wang D; Liu Y; Liu S; Hao Z; Lu Y; Yang L; Shi J; Chen J
    BMC Plant Biol; 2022 Jan; 22(1):25. PubMed ID: 35012508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity.
    Mastrangelo AM; Marone D; Laidò G; De Leonardis AM; De Vita P
    Plant Sci; 2012 Apr; 185-186():40-9. PubMed ID: 22325865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System-wide analysis of short-term response to high temperature in Pinus radiata.
    Escandón M; Valledor L; Pascual J; Pinto G; Cañal MJ; Meijón M
    J Exp Bot; 2017 Jun; 68(13):3629-3641. PubMed ID: 28645179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bromodomain protein BRD4 regulates splicing during heat shock.
    Hussong M; Kaehler C; Kerick M; Grimm C; Franz A; Timmermann B; Welzel F; Isensee J; Hucho T; Krobitsch S; Schweiger MR
    Nucleic Acids Res; 2017 Jan; 45(1):382-394. PubMed ID: 27536004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum.
    Li W; Chen Y; Ye M; Lu H; Wang D; Chen Q
    BMC Evol Biol; 2020 Nov; 20(1):142. PubMed ID: 33143637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).
    Nguyen Dinh S; Sai TZT; Nawaz G; Lee K; Kang H
    J Plant Physiol; 2016 Aug; 201():85-94. PubMed ID: 27448724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The variations in the nuclear proteome reveal new transcription factors and mechanisms involved in UV stress response in Pinus radiata.
    Pascual J; Alegre S; Nagler M; Escandón M; Annacondia ML; Weckwerth W; Valledor L; Cañal MJ
    J Proteomics; 2016 Jun; 143():390-400. PubMed ID: 26961940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue.
    Qian Y; Cao L; Zhang Q; Amee M; Chen K; Chen L
    BMC Plant Biol; 2020 Aug; 20(1):366. PubMed ID: 32746857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon.
    Wen F; Wu X; Li T; Jia M; Liu X; Li P; Zhou X; Ji X; Yue X
    PLoS One; 2017; 12(7):e0180352. PubMed ID: 28683139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-mRNA splicing repression triggers abiotic stress signaling in plants.
    Ling Y; Alshareef S; Butt H; Lozano-Juste J; Li L; Galal AA; Moustafa A; Momin AA; Tashkandi M; Richardson DN; Fujii H; Arold S; Rodriguez PL; Duque P; Mahfouz MM
    Plant J; 2017 Jan; 89(2):291-309. PubMed ID: 27664942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of PEBP gene family members in potato, their phylogenetic relationships, and expression patterns under heat stress.
    Zhang G; Jin X; Li X; Zhang N; Li S; Si H; Rajora OP; Li XQ
    Mol Biol Rep; 2022 Jun; 49(6):4683-4697. PubMed ID: 35366758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative Splicing Control of Abiotic Stress Responses.
    Laloum T; Martín G; Duque P
    Trends Plant Sci; 2018 Feb; 23(2):140-150. PubMed ID: 29074233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.