BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36152572)

  • 1. Cationic doping induced sulfur vacancy formation in polyionic sulfide for enhanced electromagnetic wave absorption.
    Hui S; Zhang L; Wu H
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):147-155. PubMed ID: 36152572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable sulfur vacancies and hetero-interfaces of FeS
    Liu J; Wang M; Zhang L; Zang D; Liu H; Francesca Liotta L; Wu H
    J Colloid Interface Sci; 2021 Jun; 591():148-160. PubMed ID: 33592523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initiating Binary Metal Oxides Microcubes Electrsomagnetic Wave Absorber Toward Ultrabroad Absorption Bandwidth Through Interfacial and Defects Modulation.
    Li F; Wu N; Kimura H; Wang Y; Xu BB; Wang D; Li Y; Algadi H; Guo Z; Du W; Hou C
    Nanomicro Lett; 2023 Oct; 15(1):220. PubMed ID: 37812363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional biotemplate-loaded nickel sulfide vacancies engineered to promote the absorption of electromagnetic waves.
    Zhu W; Wang D; Du Z; Liao Y; Zhang K; Xie S; Dong W; Rao J; Zhang Y; Liu X
    Nanoscale; 2023 Dec; 16(1):474-487. PubMed ID: 38086669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropy engineering enhances the electromagnetic wave absorption of high-entropy transition metal dichalcogenides/N-doped carbon nanofiber composites.
    Wang S; Liu Q; Li S; Huang F; Zhang H
    Mater Horiz; 2024 Feb; 11(4):1088-1097. PubMed ID: 38105730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted growth of molybdenum carbide nanoparticles in hierarchically porous nitrogen-doped carbon matrix for boosting electromagnetic wave absorption performance.
    Li Q; Liu L; Kimura H; Zhang X; Liu X; Xie X; Sun X; Xu C; Du W; Hou C
    J Colloid Interface Sci; 2024 Feb; 655():634-642. PubMed ID: 37956550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Electromagnetic Parameters Induced by Synergistic Dual-Polarization Enhancement Mechanisms with Amorphous Cobalt Phosphide with Phosphorus Vacancies for Excellent Electromagnetic Wave Dissipation Performance.
    Wen B; Miao Y; Zhang Z; Li N; Xiao J; Li Y; Feng J; Ding S; Yang G
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing Multiphase-Induced Interfacial Polarization to Surpass Defect-Induced Polarization in Multielement Sulfide Absorbers.
    Hui S; Zhou X; Zhang L; Wu H
    Adv Sci (Weinh); 2024 Feb; 11(6):e2307649. PubMed ID: 38044282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Enhancing Performance of Electromagnetic Wave Absorption for Conductive Metal-Organic Frameworks: Nanostructure Engineering or Crystal Morphology Controlling.
    Wang X; Zhang X; He A; Guo J; Liu Z
    Inorg Chem; 2024 Apr; 63(15):6948-6956. PubMed ID: 38575907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Electromagnetic Wave Absorption Properties of N-Doped SiC Nanowires.
    Shi R; Liu Z; Liu W; Kuang J
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Grown 1D/2D Structure of Dy
    Qin G; Li Y; Zhou W; Xu H; Hu F; Zhou X
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties.
    Zhu H; Jiao Q; Fu R; Su P; Yang C; Feng C; Li H; Shi D; Zhao Y
    J Colloid Interface Sci; 2022 May; 613():182-193. PubMed ID: 35033764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphase Interfacial Regulation Based on Hierarchical Porous Molybdenum Selenide to Build Anticorrosive and Multiband Tailorable Absorbers.
    Zhao T; Jia Z; Liu J; Zhang Y; Wu G; Yin P
    Nanomicro Lett; 2023 Nov; 16(1):6. PubMed ID: 37930594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of flowerlike vanadium diselenide microspheres for efficient electromagnetic wave absorption.
    Wang W; Zhang X; Wang W; Xue Y; Sheng D; Xie M; Xie A
    Nanotechnology; 2024 May; 35(30):. PubMed ID: 38653210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure, Electromagnetic Properties, and Microwave Absorption Mechanism of SiO
    Cai R; Zheng W; Yang P; Rao J; Huang X; Wang D; Du Z; Yao K; Zhang Y
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect- and Interface-Induced Dielectric Loss in ZnFe
    Shen H; Wang Z; Wang C; Zou P; Hou Z; Xu C; Wu H
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylenediamine-assisted hydrothermal synthesis of NiCo
    Chang Q; Liang H; Shi B; Li X; Zhang Y; Zhang L; Wu H
    J Colloid Interface Sci; 2021 Apr; 588():336-345. PubMed ID: 33422782
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Xu P; Meng L; He H; Qi D; Wang S; Fang J; Yue X
    Dalton Trans; 2022 Nov; 51(45):17430-17440. PubMed ID: 36326158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic Wave Absorption Properties of Structural Conductive ABS Fabricated by Fused Deposition Modeling.
    Lai W; Wang Y; He J
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32471065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of conical hollow ZnS arrays vertically grown on carbon fibers for lightweight and broadband flexible absorbers.
    Ding J; Song K; Gong C; Wang C; Guo Y; Shi C; He F
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1287-1299. PubMed ID: 34583034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.