These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36152769)

  • 1. Controlling catabolite repression for isobutanol production using glucose and xylose by overexpressing the xylose regulator.
    Lee HJ; Kim B; Kim S; Cho DH; Jung H; Bhatia SK; Gurav R; Ahn J; Park JH; Choi KY; Yang YH
    J Biotechnol; 2022 Nov; 359():21-28. PubMed ID: 36152769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using
    Oh SJ; Lee HJ; Hwang JH; Kim HJ; Shin N; Lee SH; Seo SO; Bhatia SK; Yang YH
    J Microbiol Biotechnol; 2024 Mar; 34(3):700-709. PubMed ID: 37919866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
    Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The XylR variant (R121C and P363S) releases arabinose-induced catabolite repression on xylose fermentation and enhances coutilization of lignocellulosic sugar mixtures.
    Martinez R; Flores AD; Dufault ME; Wang X
    Biotechnol Bioeng; 2019 Dec; 116(12):3476-3481. PubMed ID: 31429933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous glucose and xylose utilization by an
    Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG
    Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic co-utilization of biomass-derived sugars enhances aromatic amino acid production by engineered Escherichia coli.
    Liu A; Machas M; Mhatre A; Hajinajaf N; Sarnaik A; Nichols N; Frazer S; Wang X; Varman AM; Nielsen DR
    Biotechnol Bioeng; 2024 Feb; 121(2):784-794. PubMed ID: 37926950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain.
    Dev C; Jilani SB; Yazdani SS
    Microb Cell Fact; 2022 Aug; 21(1):154. PubMed ID: 35933385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new carbon catabolite repression mutation of Escherichia coli, mlc∗, and its use for producing isobutanol.
    Nakashima N; Tamura T
    J Biosci Bioeng; 2012 Jul; 114(1):38-44. PubMed ID: 22561880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-Fermentation of Glucose-Xylose Mixtures from Agroindustrial Residues by Ethanologenic
    Sierra-Ibarra E; Vargas-Tah A; Moss-Acosta CL; Trujillo-Martínez B; Molina-Vázquez ER; Rosas-Aburto A; Valdivia-López Á; Hernández-Luna MG; Vivaldo-Lima E; Martínez A
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evolution reveals an effective avenue for d-lactic acid production from glucose-xylose mixtures via enhanced Glk activity and a cAMP-independent CRP mutation.
    Qiao J; Fang Y; Li Z; Li J; Cai J; Liu W; Wang H; Zhu X; Zhang X
    Biotechnol Bioeng; 2024 Nov; 121(11):3514-3526. PubMed ID: 39082641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 12. Enhanced production of lactate-based polyesters in Escherichia coli from a mixture of glucose and xylose by Mlc-mediated catabolite derepression.
    Kadoya R; Matsumoto K; Takisawa K; Ooi T; Taguchi S
    J Biosci Bioeng; 2018 Apr; 125(4):365-370. PubMed ID: 29329972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.
    Wang X; Goh EB; Beller HR
    Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alleviation of Carbon Catabolite Repression through
    Delarouzée A; Lopes Ferreira N; Wasels F
    Appl Environ Microbiol; 2023 Mar; 89(3):e0213522. PubMed ID: 36779716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants.
    Yao R; Hirose Y; Sarkar D; Nakahigashi K; Ye Q; Shimizu K
    Microb Cell Fact; 2011 Aug; 10():67. PubMed ID: 21831320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate.
    Hua Y; Wang J; Zhu Y; Zhang B; Kong X; Li W; Wang D; Hong J
    Microb Cell Fact; 2019 Feb; 18(1):24. PubMed ID: 30709398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous conversion of glucose and xylose to 3-hydroxypropionic acid in engineered Escherichia coli by modulation of sugar transport and glycerol synthesis.
    Jung IY; Lee JW; Min WK; Park YC; Seo JH
    Bioresour Technol; 2015 Dec; 198():709-16. PubMed ID: 26441028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.