These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36153413)
21. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface. Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166 [TBL] [Abstract][Full Text] [Related]
22. Recognition of Grasping Patterns Using Deep Learning for Human-Robot Collaboration. Amaral P; Silva F; Santos V Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960688 [TBL] [Abstract][Full Text] [Related]
23. Path planning optimization for swine manure-cleaning robots through enhanced slime mold algorithm with cellular automata. Duan YP; Yang YZ; Cao Y; Li HM; Hu ZW; Cao RL; Liu ZY Anim Sci J; 2024; 95(1):e13992. PubMed ID: 39307823 [TBL] [Abstract][Full Text] [Related]
24. Design of a Reconfigurable Wall Disinfection Robot. Sang AWY; Moo CG; P Samarakoon SMB; Muthugala MAVJ; Elara MR Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577301 [TBL] [Abstract][Full Text] [Related]
25. Research and Implementation of Robot Vision Scanning Tracking Algorithm Based on Deep Learning. Guo H; Li W; Zhou N; Sun H; Han Z Scanning; 2022; 2022():3330427. PubMed ID: 35950087 [TBL] [Abstract][Full Text] [Related]
26. Deep-Learning-Based Indoor Human Following of Mobile Robot Using Color Feature. Algabri R; Choi MT Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397411 [TBL] [Abstract][Full Text] [Related]
28. Agricultural Robot-Centered Recognition of Early-Developmental Pest Stage Based on Deep Learning: A Case Study on Fall Armyworm ( Obasekore H; Fanni M; Ahmed SM; Parque V; Kang BY Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991858 [TBL] [Abstract][Full Text] [Related]
29. Comparison of Graph Fitting and Sparse Deep Learning Model for Robot Pose Estimation. Rodziewicz-Bielewicz J; Korzeń M Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080976 [TBL] [Abstract][Full Text] [Related]
30. Object-of-Interest Perception in a Reconfigurable Rolling-Crawling Robot. Semwal A; Lee MMJ; Sanchez D; Teo SL; Wang B; Mohan RE Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890893 [TBL] [Abstract][Full Text] [Related]
31. Self-reconfigurable robot vision pipeline for safer adaptation to varying pavements width and surface conditions. Yi L; Félix Gómez B; Ramalingam B; Rayguru MM; Elara MR; Hayat AA Sci Rep; 2022 Aug; 12(1):14557. PubMed ID: 36008439 [TBL] [Abstract][Full Text] [Related]
32. AI-Enabled Predictive Maintenance Framework for Autonomous Mobile Cleaning Robots. Pookkuttath S; Rajesh Elara M; Sivanantham V; Ramalingam B Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009556 [TBL] [Abstract][Full Text] [Related]
33. Modelling and Control of a Reconfigurable Robot for Achieving Reconfiguration and Locomotion with Different Shapes. Samarakoon SMBP; Muthugala MAVJ; Abdulkader RE; Si SW; Tun TT; Elara MR Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450805 [TBL] [Abstract][Full Text] [Related]
35. Optimization of College English Classroom Teaching Efficiency by Deep Learning SDD Algorithm. Zhang W; Xu Q Comput Intell Neurosci; 2022; 2022():1014501. PubMed ID: 35096036 [TBL] [Abstract][Full Text] [Related]
36. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning. Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740 [TBL] [Abstract][Full Text] [Related]
37. Floor cleaning: effect on bacteria and organic materials in hospital rooms. Andersen BM; Rasch M; Kvist J; Tollefsen T; Lukkassen R; Sandvik L; Welo A J Hosp Infect; 2009 Jan; 71(1):57-65. PubMed ID: 19013671 [TBL] [Abstract][Full Text] [Related]
38. An efficient dynamic system for real-time robot-path planning. Willms AR; Yang SX IEEE Trans Syst Man Cybern B Cybern; 2006 Aug; 36(4):755-66. PubMed ID: 16903362 [TBL] [Abstract][Full Text] [Related]
39. Improving the cleaning procedure to make kitchen floors less slippery. Quirion F; Poirier P; Lehane P Ergonomics; 2008 Dec; 51(12):2013-29. PubMed ID: 18932055 [TBL] [Abstract][Full Text] [Related]
40. A real-time system using deep learning to detect and track ureteral orifices during urinary endoscopy. Liu D; Peng X; Liu X; Li Y; Bao Y; Xu J; Bian X; Xue W; Qian D Comput Biol Med; 2021 Jan; 128():104104. PubMed ID: 33220590 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]