These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36154197)

  • 1. Comparison of mesopelagic organism abundance estimates using in situ target strength measurements and echo-counting techniques.
    Cotter E; Bassett C; Lavery A
    JASA Express Lett; 2021 Apr; 1(4):040801. PubMed ID: 36154197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency- and depth-dependent target strength measurements of individual mesopelagic scatterers.
    Bassett C; Lavery AC; Stanton TK; Cotter ED
    J Acoust Soc Am; 2020 Aug; 148(2):EL153. PubMed ID: 32873032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic properties.
    Dornan T; Fielding S; Saunders RA; Genner MJ
    Proc Biol Sci; 2022 Jan; 289(1967):20211781. PubMed ID: 35078354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Echo strength and density structure of Hawaiian mesopelagic boundary community patches.
    Benoit-Bird KJ; Au WW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1888-97. PubMed ID: 14587589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesopelagic fish gas bladder elongation, as estimated from wideband acoustic backscattering measurements.
    Khodabandeloo B; Ona E; Pedersen G; Korneliussen R; Melle W; Klevjer T
    J Acoust Soc Am; 2022 Jun; 151(6):4073. PubMed ID: 35778196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large mesopelagic fishes biomass and trophic efficiency in the open ocean.
    Irigoien X; Klevjer TA; Røstad A; Martinez U; Boyra G; Acuña JL; Bode A; Echevarria F; Gonzalez-Gordillo JI; Hernandez-Leon S; Agusti S; Aksnes DL; Duarte CM; Kaartvedt S
    Nat Commun; 2014; 5():3271. PubMed ID: 24509953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass.
    Dornan T; Fielding S; Saunders RA; Genner MJ
    Proc Biol Sci; 2019 May; 286(1903):20190353. PubMed ID: 31138069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of broadband target spectra in the mesopelagic using physics-informed machine learning.
    Cotter E; Bassett C; Lavery A
    J Acoust Soc Am; 2021 Jun; 149(6):3889. PubMed ID: 34241451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Scientific Fishery Biomass Estimator: System Design and Prototyping.
    Sthapit P; Kim M; Kang D; Kim K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse problem solution techniques as applied to indirect in situ estimation of fish target strength.
    Stepnowski A; Moszyński M
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2554-62. PubMed ID: 10830379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target Strength and swimbladder morphology of Mueller's pearlside (Maurolicus muelleri).
    Sobradillo B; Boyra G; Martinez U; Carrera P; Peña M; Irigoien X
    Sci Rep; 2019 Nov; 9(1):17311. PubMed ID: 31754163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target strengths of two abundant mesopelagic fish species.
    Scoulding B; Chu D; Ona E; Fernandes PG
    J Acoust Soc Am; 2015 Feb; 137(2):989-1000. PubMed ID: 25698030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroacoustic estimation of fish biomass in the Gulf of Nicoya, Costa Rica.
    Hedgepeth J; Gallucci VF; Campos J; Mug M
    Rev Biol Trop; 2000; 48(2-3):371-87. PubMed ID: 11354945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic remote sensing of swimbladder orientation and species mix in the oreo population on the Chatham Rise.
    Coombs RF; Barr R
    J Acoust Soc Am; 2004 Apr; 115(4):1516-24. PubMed ID: 15101629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic.
    Peña M; Cabrera-Gámez J; Domínguez-Brito AC
    Mar Environ Res; 2020 Feb; 154():104842. PubMed ID: 32056700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment.
    Holmin AJ; Handegard NO; Korneliussen RJ; Tjøstheim D
    J Acoust Soc Am; 2012 Dec; 132(6):3720-34. PubMed ID: 23231103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic density estimation of dense fish shoals.
    Tallon B; Roux P; Matte G; Guillard J; Skipetrov SE
    J Acoust Soc Am; 2020 Sep; 148(3):EL234. PubMed ID: 33003841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating target strength and physical characteristics of gas-bearing mesopelagic fish from wideband in situ echoes using a viscous-elastic scattering model.
    Khodabandeloo B; Agersted MD; Klevjer T; Macaulay GJ; Melle W
    J Acoust Soc Am; 2021 Jan; 149(1):673. PubMed ID: 33514171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The economic tradeoffs and ecological impacts associated with a potential mesopelagic fishery in the California Current.
    Dowd S; Chapman M; Koehn LE; Hoagland P
    Ecol Appl; 2022 Jun; 32(4):e2578. PubMed ID: 35191110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy: converting from acoustic to biological resource units.
    Benoit-Bird KJ; Au WW
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2070-5. PubMed ID: 12051427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.