These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36154197)

  • 21. Estimating target strength of estuarine pelagic fish assemblages using fisheries survey data.
    Stevens JR; Jech JM; Zydlewski GB; Brady DC
    J Acoust Soc Am; 2021 Oct; 150(4):2553. PubMed ID: 34717495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myctobase, a circumpolar database of mesopelagic fishes for new insights into deep pelagic prey fields.
    Woods B; Trebilco R; Walters A; Hindell M; Duhamel G; Flores H; Moteki M; Pruvost P; Reiss C; Saunders RA; Sutton C; Gan YM; Van de Putte A
    Sci Data; 2022 Jul; 9(1):404. PubMed ID: 35831309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea.
    Klevjer TA; Torres DJ; Kaartvedt S
    Mar Biol; 2012; 159(8):1833-1841. PubMed ID: 24391275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of an eddy dipole of the Mozambique channel on mesopelagic organisms, highlighted by multifrequency backscatter classification.
    Annasawmy P; Roudaut G; Lebourges Dhaussy A
    PLoS One; 2024; 19(9):e0309840. PubMed ID: 39259721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vertical distribution and acoustic characteristics of deep water micronektonic crustacean in the Bay of Biscay.
    Peña M; Moyà M; Carbonell A; González-Quirós R
    Mar Environ Res; 2023 Jun; 188():105967. PubMed ID: 37094526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating fish abundance at spawning aggregations from courtship sound levels.
    Rowell TJ; Demer DA; Aburto-Oropeza O; Cota-Nieto JJ; Hyde JR; Erisman BE
    Sci Rep; 2017 Jun; 7(1):3340. PubMed ID: 28611365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic scattering by gas-bearing cyanobacterium Microcystis: Modeling and in situ biomass assessment.
    Chu D; Ostrovsky I; Homma H
    Sci Total Environ; 2021 Nov; 794():148573. PubMed ID: 34225151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observing individual fish behavior in fish aggregations: tracking in dense fish aggregations using a split-beam echosounder.
    Handegard NO
    J Acoust Soc Am; 2007 Jul; 122(1):177-87. PubMed ID: 17614477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogeography of the Global Ocean's Mesopelagic Zone.
    Proud R; Cox MJ; Brierley AS
    Curr Biol; 2017 Jan; 27(1):113-119. PubMed ID: 28017608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diel dynamics of dissolved organic matter and heterotrophic prokaryotes reveal enhanced growth at the ocean's mesopelagic fish layer during daytime.
    Morán XAG; García FC; Røstad A; Silva L; Al-Otaibi N; Irigoien X; Calleja ML
    Sci Total Environ; 2022 Jan; 804():150098. PubMed ID: 34508930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring fish abundance in a weir trap using an acoustical-optical platform.
    Miksis-Olds JL; Stokesbury KD
    J Acoust Soc Am; 2007 Oct; 122(4):2431-8. PubMed ID: 17902877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing Deep-Pelagic Shrimp Biomass to 3000 m in The Atlantic Ocean and Ramifications of Upscaled Global Biomass.
    Vereshchaka AL; Lunina AA; Sutton T
    Sci Rep; 2019 Apr; 9(1):5946. PubMed ID: 30976092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating physiology and environmental dynamics to operationalize environmental DNA (eDNA) as a means to monitor freshwater macro-organism abundance.
    Yates MC; Cristescu ME; Derry AM
    Mol Ecol; 2021 Dec; 30(24):6531-6550. PubMed ID: 34592014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trophic ecology of Lampanyctus crocodilus on north-west Mediterranean Sea slopes in relation to reproductive cycle and environmental variables.
    Fanelli E; Papiol V; Cartes JE; Rodriguez-Romeu O
    J Fish Biol; 2014 Jun; 84(6):1654-88. PubMed ID: 24786723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Target phase: an extra dimension for fish and plankton target identification.
    Barr R; Coombs RF
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1358-71. PubMed ID: 16240797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpretation of multi-frequency acoustic data: effects of fish orientation.
    Jech JM
    J Acoust Soc Am; 2011 Jan; 129(1):54-63. PubMed ID: 21302987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bottom-up regulation of a pelagic community through spatial aggregations.
    Benoit-Bird KJ; McManus MA
    Biol Lett; 2012 Oct; 8(5):813-6. PubMed ID: 22552636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vertical ecology of the pelagic ocean: classical patterns and new perspectives.
    Sutton TT
    J Fish Biol; 2013 Dec; 83(6):1508-27. PubMed ID: 24298949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Hydroacoustic assessment of fish resources in reservoirs with different fishery management].
    Sun MB; Gu XH; Zeng QF; Mao ZG; Gu XK
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):235-42. PubMed ID: 23718015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of seafloor roughness from high-frequency acoustic backscattering measurements in shallow water off the west coast of India.
    Radhakrishnan S; A P A
    J Acoust Soc Am; 2020 Nov; 148(5):2987. PubMed ID: 33261383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.