These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36154197)

  • 41. Multiple scattering in a reflecting cavity: application to fish counting in a tank.
    De Rosny J; Roux P
    J Acoust Soc Am; 2001 Jun; 109(6):2587-97. PubMed ID: 11425099
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sampling mobile oceanic fishes and sharks: implications for fisheries and conservation planning.
    Letessier TB; Bouchet PJ; Meeuwig JJ
    Biol Rev Camb Philos Soc; 2017 May; 92(2):627-646. PubMed ID: 26680116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Broadband backscatter from individual Hawaiian mesopelagic boundary community animals with implications for spinner dolphin foraging.
    Au WW; Benoit-Bird KJ
    J Acoust Soc Am; 2008 May; 123(5):2884-94. PubMed ID: 18529204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Length-weight relationships of 55 mesopelagic fishes from the eastern tropical North Atlantic: Across- and within-species variation (body shape, growth stanza, condition factor).
    Czudaj S; Möllmann C; Fock HO
    J Fish Biol; 2022 Jul; 101(1):26-41. PubMed ID: 35470897
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of mesopelagic fishes as microplastics vectors across the deep-sea layers from the Southwestern Tropical Atlantic.
    Justino AKS; Ferreira GVB; Schmidt N; Eduardo LN; Fauvelle V; Lenoble V; Sempéré R; Panagiotopoulos C; Mincarone MM; Frédou T; Lucena-Frédou F
    Environ Pollut; 2022 May; 300():118988. PubMed ID: 35157937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diversification Patterns of Lanternfishes Reveal Multiple Rate Shifts in a Critical Mesopelagic Clade Targeted for Human Exploitation.
    Denton JSS
    Curr Biol; 2018 Mar; 28(6):933-940.e4. PubMed ID: 29526592
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On acoustic scattering by a shell-covered seafloor.
    Stanton TK
    J Acoust Soc Am; 2000 Aug; 108(2):551-5. PubMed ID: 10955619
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arsenic species in mesopelagic organisms and their fate during aquafeed processing.
    Tibon J; Amlund H; Gomez-Delgado AI; Berntssen MHG; Silva MS; Wiech M; Sloth JJ; Sele V
    Chemosphere; 2022 Sep; 302():134906. PubMed ID: 35561763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Processing Mixed Mesopelagic Biomass from the North-East Atlantic into Aquafeed Resources; Implication for Food Safety.
    Berntssen MHG; Thoresen L; Albrektsen S; Grimaldo E; Grimsmo L; Whitaker RD; Sele V; Wiech M
    Foods; 2021 Jun; 10(6):. PubMed ID: 34199424
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Complete mitochondrial DNA genomes for two northeast Pacific mesopelagic fishes, the Mexican lampfish (
    Aguilar A; Truong BR; Gutierrez F
    Mitochondrial DNA B Resour; 2018; 3(1):21-23. PubMed ID: 30511017
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimating fish orientation from broadband, limited-angle, multiview, acoustic reflections.
    Jaffe JS; Roberts PL
    J Acoust Soc Am; 2011 Feb; 129(2):670-80. PubMed ID: 21361426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-frequency target strength and abundance of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during the Ocean Acoustic Waveguide Remote Sensing 2006 Experiment.
    Gong Z; Andrews M; Jagannathan S; Patel R; Jech JM; Makris NC; Ratilal P
    J Acoust Soc Am; 2010 Jan; 127(1):104-23. PubMed ID: 20058955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydroacoustics as a tool to examine the effects of Marine Protected Areas and habitat type on marine fish communities.
    Egerton JP; Johnson AF; Turner J; LeVay L; Mascareñas-Osorio I; Aburto-Oropeza O
    Sci Rep; 2018 Jan; 8(1):47. PubMed ID: 29335421
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multispectral and multiangle measurements of acoustic seabed backscatter acquired with a tilted calibrated echosounder.
    Fezzani R; Berger L; le Bouffant N; Fonseca L; Lurton X
    J Acoust Soc Am; 2021 Jun; 149(6):4503. PubMed ID: 34241471
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.
    Benoit-Bird KJ; Lawson GL
    Ann Rev Mar Sci; 2016; 8():463-90. PubMed ID: 26515810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acoustic backscattering by Hawaiian lutjanid snappers. 1. Target strength and swimbladder characteristics.
    Benoit-Bird KJ; Au WW; Kelley CD
    J Acoust Soc Am; 2003 Nov; 114(5):2757-66. PubMed ID: 14650010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using a recreational grade echosounder to quantify the potential prey field of coastal predators.
    Brough T; Rayment W; Dawson S
    PLoS One; 2019; 14(5):e0217013. PubMed ID: 31116761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Estimation of the Backscattering Strength of Artificial Bubbles Using an Acoustic Doppler Current Profiler.
    Bae HS; Kim WK; Son SU; Kim WS; Park JS
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlled and in situ target strengths of the jumbo squid Dosidicus gigas and identification of potential acoustic scattering sources.
    Benoit-Bird KJ; Gilly WF; Au WW; Mate B
    J Acoust Soc Am; 2008 Mar; 123(3):1318-28. PubMed ID: 18345820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fish wariness is a more sensitive indicator to changes in fishing pressure than abundance, length or biomass.
    Goetze JS; Januchowski-Hartley FA; Claudet J; Langlois TJ; Wilson SK; Jupiter SD
    Ecol Appl; 2017 Jun; 27(4):1178-1189. PubMed ID: 28140527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.