These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36154423)

  • 1. Subrecoil Clock-Transition Laser Cooling Enabling Shallow Optical Lattice Clocks.
    Zhang X; Beloy K; Hassan YS; McGrew WF; Chen CC; Siegel JL; Grogan T; Ludlow AD
    Phys Rev Lett; 2022 Sep; 129(11):113202. PubMed ID: 36154423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clock-Line-Mediated Sisyphus Cooling.
    Chen CC; Siegel JL; Hunt BD; Grogan T; Hassan YS; Beloy K; Gibble K; Brown RC; Ludlow AD
    Phys Rev Lett; 2024 Aug; 133(5):053401. PubMed ID: 39159118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier thermometry of cold ytterbium atoms in an optical lattice clock.
    Han C; Zhou M; Zhang X; Gao Q; Xu Y; Li S; Zhang S; Xu X
    Sci Rep; 2018 May; 8(1):7927. PubMed ID: 29784962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floquet Engineering Hz-Level Rabi Spectra in Shallow Optical Lattice Clock.
    Yin MJ; Lu XT; Li T; Xia JJ; Wang T; Zhang XF; Chang H
    Phys Rev Lett; 2022 Feb; 128(7):073603. PubMed ID: 35244448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Quantum States of Matter for Atomic Clocks in Shallow Optical Lattices.
    Hutson RB; Goban A; Marti GE; Sonderhouse L; Sanner C; Ye J
    Phys Rev Lett; 2019 Sep; 123(12):123401. PubMed ID: 31633951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrow-line Cooling and Determination of the Magic Wavelength of Cd.
    Yamaguchi A; Safronova MS; Gibble K; Katori H
    Phys Rev Lett; 2019 Sep; 123(11):113201. PubMed ID: 31573273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
    Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential clock comparisons with a multiplexed optical lattice clock.
    Zheng X; Dolde J; Lochab V; Merriman BN; Li H; Kolkowitz S
    Nature; 2022 Feb; 602(7897):425-430. PubMed ID: 35173344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly coherent spectroscopy of ultracold atoms and molecules in optical lattices.
    Zelevinsky T; Blatt S; Boyd MM; Campbell GK; Ludlow AD; Ye J
    Chemphyschem; 2008 Feb; 9(3):375-82. PubMed ID: 18275047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optical lattice clock with accuracy and stability at the 10(-18) level.
    Bloom BJ; Nicholson TL; Williams JR; Campbell SL; Bishof M; Zhang X; Zhang W; Bromley SL; Ye J
    Nature; 2014 Feb; 506(7486):71-5. PubMed ID: 24463513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clock with 8×10^{-19} Systematic Uncertainty.
    Aeppli A; Kim K; Warfield W; Safronova MS; Ye J
    Phys Rev Lett; 2024 Jul; 133(2):023401. PubMed ID: 39073965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evaluation of a
    Gao Q; Zhou M; Han C; Li S; Zhang S; Yao Y; Li B; Qiao H; Ai D; Lou G; Zhang M; Jiang Y; Bi Z; Ma L; Xu X
    Sci Rep; 2018 May; 8(1):8022. PubMed ID: 29789631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fermi-degenerate three-dimensional optical lattice clock.
    Campbell SL; Hutson RB; Marti GE; Goban A; Darkwah Oppong N; McNally RL; Sonderhouse L; Robinson JM; Zhang W; Bloom BJ; Ye J
    Science; 2017 Oct; 358(6359):90-94. PubMed ID: 28983047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous multi-step pumping of the optical clock transition in alkaline-earth atoms with minimal perturbation.
    Hotter C; Plankensteiner D; Kazakov G; Ritsch H
    Opt Express; 2022 Feb; 30(4):5553-5568. PubMed ID: 35209515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms.
    Reichenbach I; Deutsch IH
    Phys Rev Lett; 2007 Sep; 99(12):123001. PubMed ID: 17930500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromagic clock: microwave clock based on atoms in an engineered optical lattice.
    Beloy K; Derevianko A; Dzuba VA; Flambaum VV
    Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of multi-body interactions in a fermionic lattice clock.
    Goban A; Hutson RB; Marti GE; Campbell SL; Perlin MA; Julienne PS; D'Incao JP; Rey AM; Ye J
    Nature; 2018 Nov; 563(7731):369-373. PubMed ID: 30429544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When should we change the definition of the second?
    Gill P
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1953):4109-30. PubMed ID: 21930568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock.
    Brown RC; Phillips NB; Beloy K; McGrew WF; Schioppo M; Fasano RJ; Milani G; Zhang X; Hinkley N; Leopardi H; Yoon TH; Nicolodi D; Fortier TM; Ludlow AD
    Phys Rev Lett; 2017 Dec; 119(25):253001. PubMed ID: 29303326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.