BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 36154599)

  • 1. Metabolic Pathways Regulating Colorectal Cancer: A Potential Therapeutic Approach.
    Zafari N; Velayati M; Damavandi S; Pourali G; Mobarhan MG; Nassiri M; Hassanian SM; Khazaei M; Ferns GA; Avan A
    Curr Pharm Des; 2022; 28(36):2995-3009. PubMed ID: 36154599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy.
    Wang G; Wang JJ; Yin PH; Xu K; Wang YZ; Shi F; Gao J; Fu XL
    J Cell Physiol; 2018 Jan; 234(1):348-368. PubMed ID: 30069931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic pathways regulating colorectal cancer initiation and progression.
    La Vecchia S; Sebastián C
    Semin Cell Dev Biol; 2020 Feb; 98():63-70. PubMed ID: 31129171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting metabolic reprogramming in KRAS-driven cancers.
    Kawada K; Toda K; Sakai Y
    Int J Clin Oncol; 2017 Aug; 22(4):651-659. PubMed ID: 28647837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer.
    Sun Q; Wu J; Zhu G; Li T; Zhu X; Ni B; Xu B; Ma X; Li J
    Front Endocrinol (Lausanne); 2022; 13():1089918. PubMed ID: 36778600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer.
    Jing Z; Liu Q; He X; Jia Z; Xu Z; Yang B; Liu P
    J Exp Clin Cancer Res; 2022 Jun; 41(1):198. PubMed ID: 35689245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics.
    Pal S; Sharma A; Mathew SP; Jaganathan BG
    Front Immunol; 2022; 13():955476. PubMed ID: 36618350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial remodeling in colorectal cancer initiation, progression, metastasis, and therapy: A review.
    Abdelmaksoud NM; Abulsoud AI; Abdelghany TM; Elshaer SS; Rizk SM; Senousy MA
    Pathol Res Pract; 2023 Jun; 246():154509. PubMed ID: 37182313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer.
    Kasprzak A
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer.
    Dong S; Liang S; Cheng Z; Zhang X; Luo L; Li L; Zhang W; Li S; Xu Q; Zhong M; Zhu J; Zhang G; Hu S
    J Exp Clin Cancer Res; 2022 Jan; 41(1):15. PubMed ID: 34998404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy.
    Nenkov M; Ma Y; Gaßler N; Chen Y
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34200820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ERK and JNK pathways in the regulation of metabolic reprogramming.
    Papa S; Choy PM; Bubici C
    Oncogene; 2019 Mar; 38(13):2223-2240. PubMed ID: 30487597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting cellular energy metabolism- mediated ferroptosis by small molecule compounds for colorectal cancer therapy.
    Wang G; Wang JJ; Xu XN; Shi F; Fu XL
    J Drug Target; 2022 Sep; 30(8):819-832. PubMed ID: 35481396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EphB2 stem-related and EphA2 progression-related miRNA-based networks in progressive stages of CRC evolution: clinical significance and potential miRNA drivers.
    De Robertis M; Mazza T; Fusilli C; Loiacono L; Poeta ML; Sanchez M; Massi E; Lamorte G; Diodoro MG; Pescarmona E; Signori E; Pesole G; Vescovi AL; Garcia-Foncillas J; Fazio VM
    Mol Cancer; 2018 Nov; 17(1):169. PubMed ID: 30501625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy.
    Wang G; Yu Y; Wang YZ; Wang JJ; Guan R; Sun Y; Shi F; Gao J; Fu XL
    J Cell Physiol; 2019 Aug; 234(10):17023-17049. PubMed ID: 30888065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking metabolic reprogramming to therapy resistance in cancer.
    Morandi A; Indraccolo S
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):1-6. PubMed ID: 28065746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism.
    Wai Hon K; Zainal Abidin SA; Othman I; Naidu R
    Cancers (Basel); 2020 Aug; 12(9):. PubMed ID: 32878019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Strategies for Glucose Metabolic Pathways and T Cells in Colorectal Cancer.
    Wang G; Wang JJ; Guan R; Sun Y; Shi F; Gao J; Fu XL
    Curr Cancer Drug Targets; 2019; 19(7):534-550. PubMed ID: 30360743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic reprogramming links chronic intestinal inflammation and the oncogenic transformation in colorectal tumorigenesis.
    Zhang S; Cao L; Li Z; Qu D
    Cancer Lett; 2019 May; 450():123-131. PubMed ID: 30851417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.