These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36154624)

  • 1. On the concentration dependence of sound attenuation in aqueous suspensions of silt- and sand-sized sediment: A compilation and analysis of the available data.
    Hare J; Hay AE
    JASA Express Lett; 2022 Mar; 2(3):036002. PubMed ID: 36154624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency dependence of acoustic backscatter from 5 to 65 MHz (0.06 < ka < 4.0) of polystyrene beads in agarose.
    Bridal SL; Wallace KD; Trousil RL; Wickline SA; Miller JG
    J Acoust Soc Am; 1996 Sep; 100(3):1841-8. PubMed ID: 8817907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of infauna, worm tubes, and shell hash on sediment acoustic variability and deviation from the viscous grain shearing model.
    Lee KM; Venegas GR; Ballard MS; Dorgan KM; Kiskaddon E; McNeese AR; Wilson PS
    J Acoust Soc Am; 2022 Oct; 152(4):2456. PubMed ID: 36319245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase speed in water-saturated sand and glass beads at MHz frequencies.
    Hare J; Hay AE
    J Acoust Soc Am; 2020 Oct; 148(4):2301. PubMed ID: 33138485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.
    Moore SA; Le Coz J; Hurther D; Paquier A
    J Acoust Soc Am; 2013 Apr; 133(4):1959-70. PubMed ID: 23556566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On acoustic reflection from sand-sized water-saturated granular media at MHz frequencies: Measurements, models and the role of speckle.
    Hare J; Hay AE
    J Acoust Soc Am; 2020 Nov; 148(5):3291. PubMed ID: 33261414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inversion of seabed attenuation using time-warping of close range data.
    Zeng J; Chapman NR; Bonnel J
    J Acoust Soc Am; 2013 Nov; 134(5):EL394-9. PubMed ID: 24181981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seabed acoustics of a sand ridge on the New Jersey continental shelf.
    Knobles DP; Wilson PS; Goff JA; Cho SE
    J Acoust Soc Am; 2008 Sep; 124(3):EL151-6. PubMed ID: 19045558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ measurements of velocity dispersion and attenuation in New Jersey Shelf sediments.
    Turgut A; Yamamoto T
    J Acoust Soc Am; 2008 Sep; 124(3):EL122-7. PubMed ID: 19045553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scattering from suspended sediments having different and mixed mineralogical compositions: comparison of laboratory measurements and theoretical predictions.
    Moate BD; Thorne PD
    J Acoust Soc Am; 2013 Mar; 133(3):1320-34. PubMed ID: 23464004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral attenuation of sound in dilute suspensions with nonlinear particle relaxation.
    Kandula M
    J Acoust Soc Am; 2008 Nov; 124(5):EL284-90. PubMed ID: 19045679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ sediment dispersion estimates in the presence of discrete layers and gradients.
    Holland CW; Dettmer J
    J Acoust Soc Am; 2013 Jan; 133(1):50-61. PubMed ID: 23297882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation of sound absorption and shallow water modal attenuation to plane wave attenuation.
    Pierce AD
    J Acoust Soc Am; 2009 Nov; 126(5):EL153-9. PubMed ID: 19894791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the exponent in the power law for the attenuation at low frequencies in sandy sediments.
    Carey WM; Pierce AD; Evans RE; Holmes JD
    J Acoust Soc Am; 2008 Nov; 124(5):EL271-7. PubMed ID: 19045677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of sound in sand sediments due to porosity fluctuations.
    Hefner BT; Jackson DR
    J Acoust Soc Am; 2014 Aug; 136(2):583-95. PubMed ID: 25096093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic scattering by a spherical obstacle: modification to the analytical long-wavelength solution for the zero-order coefficient.
    Pinfield VJ; Challis RE
    J Acoust Soc Am; 2011 Apr; 129(4):1851-6. PubMed ID: 21476641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic attenuation, phase and group velocities in liquid-filled pipes: Theory, experiment, and examples of water and mercury.
    Baik K; Jiang J; Leighton TG
    J Acoust Soc Am; 2010 Nov; 128(5):2610-24. PubMed ID: 21110559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation and group speed in water-saturated granular materials at MHz frequencies.
    Hare J; Hay AE
    J Acoust Soc Am; 2018 May; 143(5):2744. PubMed ID: 29857714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comments on "On pore fluid viscosity and the wave properties of saturated granular materials including marine sediments" [J. Acoust. Soc. Am. 122, 1486-1501 (2007)].
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2010 Apr; 127(4):2095-8; discussion 2099-102. PubMed ID: 20369987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High frequency compressional wave speed and attenuation measurements in water-saturated granular media with unimodal and bimodal grain size distributions.
    Yang H; Seong W
    J Acoust Soc Am; 2018 Feb; 143(2):659. PubMed ID: 29495751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.