These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 361547)

  • 1. Lymphopenia and impaired immunological activities of splenocytes during the immune response to cholera enterotoxin.
    Kateley JR; Holderbach J; Friedman H
    Immunology; 1978 Oct; 35(4):627-36. PubMed ID: 361547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of azobenzenearsonate- (ABA) specific helper and suppressor T cells and in vitro evaluation of their activities in the antibody response to T-dependent ABA-protein conjugates.
    Adorini L; Pini C; D'Agostaro G; Di Felice G; Mancini C; Pozzi LV; Vietri S; Doria G
    J Immunol; 1981 Sep; 127(3):1018-23. PubMed ID: 6455467
    [No Abstract]   [Full Text] [Related]  

  • 3. The mouse mutant "motheaten". I. Development of lymphocyte populations.
    Sidman CL; Shultz LD; Unanue ER
    J Immunol; 1978 Dec; 121(6):2392-8. PubMed ID: 363946
    [No Abstract]   [Full Text] [Related]  

  • 4. Population changes in antigen-binding and antibody-secreting cells in the course of the immune response.
    Paul WE; Sharon R; Davie JM; McMaster PR
    Soc Gen Physiol Ser; 1974; 29():49-58. PubMed ID: 4154503
    [No Abstract]   [Full Text] [Related]  

  • 5. The requirement for the expression of previously unexpressed genes in the generation of T and B antigen-binding cells and the changes in sIg isotype following in vitro immunization.
    Merrill JE; Ashman RF
    Immunology; 1979 Nov; 38(3):591-9. PubMed ID: 118113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholera toxin and related enterotoxins: a cell biological and immunological perspective.
    de Haan L; Hirst TR
    J Nat Toxins; 2000 Aug; 9(3):281-97. PubMed ID: 10994530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The xenogeneic effect. II. Requirement for unactivated murine T cells during restoration of immune responsiveness with xenogeneic reconstitution factor.
    Farrar JJ; Fuller-Bonar J
    J Immunol; 1976 Jul; 117(1):274-82. PubMed ID: 778265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of staphylococcal enterotoxins on the primary in vitro immune response.
    Smith BG; Johnson HM
    J Immunol; 1975 Aug; 115(2):575-8. PubMed ID: 1097520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sublethal gamma radiation on T and B cell activity in the antibody response of mice.
    Carlson DE; Lubet RA
    Radiat Res; 1976 Jan; 65(1):111-9. PubMed ID: 1108096
    [No Abstract]   [Full Text] [Related]  

  • 10. Specific antigen-binding and antibody-secreting lymphocytes associated with the erythrocyte autoantibody responses of NZB and genetically unrelated mice.
    DeHeer DH; Edgington TS
    J Immunol; 1976 Apr; 116(4):1051-8. PubMed ID: 1082901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of lymphocytes in the mouse bone marrow. III. The adoptive response of bone marrow cells to a thymus cell-independent antigen.
    Stocker JW; Osmond DG; Nossal GJ
    Immunology; 1974 Nov; 27(5):795-806. PubMed ID: 4279889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional absence of a B cell subpopulation in ageing New Zealand mice.
    Cohen PL
    Clin Exp Immunol; 1980 May; 40(2):365-72. PubMed ID: 7002389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histometric analysis of the chicken spleen during primary immune response to soluble bovine serum albumin. III. Effect of antigen dose on proliferation of immunologically competent cells using optimal and large quantities of antigen.
    Nagy ZA; Fehér G
    Z Immunitatsforsch Exp Klin Immunol; 1972 May; 143(4):323-32. PubMed ID: 4282917
    [No Abstract]   [Full Text] [Related]  

  • 14. High anti-TNP plaque-forming cell potential of residual mIg+ cells in a T cell population.
    Mond JJ; Mage MG; Rothstein TL; Mosier DE; Herrod H; Asofsky R; Paul WE
    J Immunol; 1980 Oct; 125(4):1526-9. PubMed ID: 6774022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T cell-dependent mediator and B-cell clones.
    Lefkovits I; QUintáns J; Munro A; Waldmann H
    Immunology; 1975 Jun; 28(6):1149-54. PubMed ID: 1093973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiation of the in vitro T-dependent antibody response by the B subunit of cholera toxin.
    Campbell KS; Munson AE
    J Pharmacol Exp Ther; 1987 Sep; 242(3):895-904. PubMed ID: 2821230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of cigarette tobacco smoke products on the immune response. The cellular basis of immunosuppression by a water-soluble condensate of tobacco smoke.
    Jacob CV; Stelzer GT; Wallace JH
    Immunology; 1980 Aug; 40(4):621-7. PubMed ID: 7000690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceptor site(s) for T cell-replacing factor (TRF) on B lymphocytes. I. TRF-substituting activity of anti-TRF acceptor site(s) antibody in the triggering of B cells.
    Takatsu K; Sano Y; Hashimoto N; Tomita S; Hamaoka T
    J Immunol; 1982 Jun; 128(6):2575-80. PubMed ID: 6978907
    [No Abstract]   [Full Text] [Related]  

  • 19. T cell control of the antibody response to the T-independent antigen, DAGG-Ficoll.
    Nordin AA; Schreier MH
    J Immunol; 1982 Aug; 129(2):557-62. PubMed ID: 6177769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age related changes in the in vitro immune response: increased suppressor activity in immature and aged mice.
    DeKruyff RH; Kim YT; Siskind GW; Weksler ME
    J Immunol; 1980 Jul; 125(1):142-7. PubMed ID: 6445918
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.