These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36154874)
1. Harmonic viscoelastic response of 3D histology-informed white matter model. Wu X; Georgiadis JG; Pelegri AA Mol Cell Neurosci; 2022 Dec; 123():103782. PubMed ID: 36154874 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity analysis of effective transverse shear viscoelastic and diffusional properties of myelinated white matter. Sullivan DJ; Wu X; Gallo NR; Naughton NM; Georgiadis JG; Pelegri AA Phys Med Biol; 2021 Jan; 66(3):035027. PubMed ID: 32599577 [TBL] [Abstract][Full Text] [Related]
3. A micromechanical hyperelastic modeling of brain white matter under large deformation. Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829 [TBL] [Abstract][Full Text] [Related]
4. Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter. Eskandari F; Shafieian M; Aghdam MM; Laksari K Ann Biomed Eng; 2021 Mar; 49(3):991-999. PubMed ID: 33025318 [TBL] [Abstract][Full Text] [Related]
5. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography. Schmidt JL; Tweten DJ; Badachhape AA; Reiter AJ; Okamoto RJ; Garbow JR; Bayly PV J Mech Behav Biomed Mater; 2018 Mar; 79():30-37. PubMed ID: 29253729 [TBL] [Abstract][Full Text] [Related]
6. Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model. Wu T; Alshareef A; Giudice JS; Panzer MB Ann Biomed Eng; 2019 Sep; 47(9):1908-1922. PubMed ID: 30877404 [TBL] [Abstract][Full Text] [Related]
7. A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter. Abolfathi N; Naik A; Sotudeh Chafi M; Karami G; Ziejewski M Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):249-62. PubMed ID: 18846460 [TBL] [Abstract][Full Text] [Related]
8. On the application of hybrid deep 3D convolutional neural network algorithms for predicting the micromechanics of brain white matter. Wu X; Pasupathy P; Pelegri AA Comput Methods Programs Biomed; 2024 Nov; 256():108381. PubMed ID: 39232375 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components. Yousefsani SA; Shamloo A; Farahmand F Biomech Model Mechanobiol; 2020 Jun; 19(3):1143-1153. PubMed ID: 31853724 [TBL] [Abstract][Full Text] [Related]
10. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique. Yousefsani SA; Shamloo A; Farahmand F J Mech Behav Biomed Mater; 2018 Apr; 80():194-202. PubMed ID: 29428702 [TBL] [Abstract][Full Text] [Related]
11. A Three-Dimensional Statistical Volume Element for Histology Informed Micromechanical Modeling of Brain White Matter. Hoursan H; Farahmand F; Ahmadian MT Ann Biomed Eng; 2020 Apr; 48(4):1337-1353. PubMed ID: 31965358 [TBL] [Abstract][Full Text] [Related]
12. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography. Guidetti M; Lorgna G; Hammersly M; Lewis P; Klatt D; Vena P; Shah R; Royston TJ J Mech Behav Biomed Mater; 2019 Jan; 89():199-208. PubMed ID: 30292169 [TBL] [Abstract][Full Text] [Related]
13. A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers. Yousefsani SA; Farahmand F; Shamloo A J Mech Behav Biomed Mater; 2018 Dec; 88():288-295. PubMed ID: 30196184 [TBL] [Abstract][Full Text] [Related]
14. An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural-mechanical relationships. Labus KM; Puttlitz CM J Mech Behav Biomed Mater; 2016 Sep; 62():195-208. PubMed ID: 27214689 [TBL] [Abstract][Full Text] [Related]
15. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem. Javid S; Rezaei A; Karami G J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933 [TBL] [Abstract][Full Text] [Related]
16. A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering. Bai Y; Kaiser NJ; Coulombe KLK; Srivastava V J Mech Behav Biomed Mater; 2021 Sep; 121():104627. PubMed ID: 34130078 [TBL] [Abstract][Full Text] [Related]
17. An Ogden hyperelastic 3D micromechanical model to depict Poynting effect in brain white matter. Agarwal M; Pelegri AA Heliyon; 2024 Feb; 10(3):e25379. PubMed ID: 38371981 [TBL] [Abstract][Full Text] [Related]
18. Viscoelastic damage evaluation of the axon. Hasan F; Mahmud KA; Khan MI; Adnan A Front Bioeng Biotechnol; 2022; 10():904818. PubMed ID: 36277388 [TBL] [Abstract][Full Text] [Related]
19. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. Feng Y; Okamoto RJ; Namani R; Genin GM; Bayly PV J Mech Behav Biomed Mater; 2013 Jul; 23():117-32. PubMed ID: 23680651 [TBL] [Abstract][Full Text] [Related]
20. Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties. Pan Y; Sullivan D; Shreiber DI; Pelegri AA Front Bioeng Biotechnol; 2013; 1():19. PubMed ID: 25152875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]