These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 36154894)

  • 61. Vitiligo: what's new in the psycho-neuro-endocrine-immune connection and related treatments.
    Lotti T; Zanardelli M; D'Erme AM
    Wien Med Wochenschr; 2014 Jul; 164(13-14):278-85. PubMed ID: 25059737
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Decreased methionine sulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress: a possible cause for melanocyte loss in vitiligo.
    Zhou Z; Li CY; Li K; Wang T; Zhang B; Gao TW
    Br J Dermatol; 2009 Sep; 161(3):504-9. PubMed ID: 19558554
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin.
    Prignano F; Pescitelli L; Becatti M; Di Gennaro P; Fiorillo C; Taddei N; Lotti T
    J Dermatol Sci; 2009 Jun; 54(3):157-67. PubMed ID: 19282153
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Intelligent bioengineering in vitiligo treatment: transdermal protein transduction of melanocyte-lineage-specific genes.
    Mou Y; Jiang X; Du Y; Xue L
    Med Hypotheses; 2012 Dec; 79(6):786-9. PubMed ID: 22999738
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo.
    Jian Z; Li K; Song P; Zhu G; Zhu L; Cui T; Liu B; Tang L; Wang X; Wang G; Gao T; Li C
    J Invest Dermatol; 2014 Aug; 134(8):2221-2230. PubMed ID: 24662764
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Why treatments do(n't) work in vitiligo: An autoinflammatory perspective.
    Speeckaert R; Speeckaert MM; van Geel N
    Autoimmun Rev; 2015 Apr; 14(4):332-40. PubMed ID: 25500433
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Vitiligo: Pathogenesis, clinical variants and treatment approaches.
    Iannella G; Greco A; Didona D; Didona B; Granata G; Manno A; Pasquariello B; Magliulo G
    Autoimmun Rev; 2016 Apr; 15(4):335-43. PubMed ID: 26724277
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Circulatory levels of alarmins in patients with non-segmental vitiligo: Potential biomarkers for disease diagnosis and activity/severity assessment.
    He K; Wu W; Wang X; Dai W; Wang S; Li C; Li S
    Front Immunol; 2022; 13():1069196. PubMed ID: 36569840
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis.
    Jadeja SD; Mayatra JM; Vaishnav J; Shukla N; Begum R
    Front Immunol; 2020; 11():624566. PubMed ID: 33613564
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Melanocytes are not absent in lesional skin of long duration vitiligo.
    Tobin DJ; Swanson NN; Pittelkow MR; Peters EM; Schallreuter KU
    J Pathol; 2000 Aug; 191(4):407-16. PubMed ID: 10918216
    [TBL] [Abstract][Full Text] [Related]  

  • 71. 42 °C heat stress pretreatment protects human melanocytes against 308-nm laser-induced DNA damage in vitro.
    Hu W; Mi N; Xu Y; Zhao G; Gu W
    Lasers Med Sci; 2020 Oct; 35(8):1801-1809. PubMed ID: 32472428
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo.
    Wang Y; Li S; Li C
    Clin Rev Allergy Immunol; 2021 Dec; 61(3):299-323. PubMed ID: 34283349
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The effects of calcipotriol on the dendritic morphology of human melanocytes under oxidative stress and a possible mechanism: is it a mitochondrial protector?
    Gong Q; Li X; Sun J; Ding G; Zhou M; Zhao W; Lu Y
    J Dermatol Sci; 2015 Feb; 77(2):117-24. PubMed ID: 25592908
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Targeting High Mobility Group Box 1 in Subarachnoid Hemorrhage: A Systematic Review.
    Muhammad S; Chaudhry SR; Kahlert UD; Lehecka M; Korja M; Niemelä M; Hänggi D
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32295146
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Autoimmunity in vitiligo: Therapeutic implications and opportunities.
    Khaitan BK; Sindhuja T
    Autoimmun Rev; 2022 Jan; 21(1):102932. PubMed ID: 34506987
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Release mechanisms of major DAMPs.
    Murao A; Aziz M; Wang H; Brenner M; Wang P
    Apoptosis; 2021 Apr; 26(3-4):152-162. PubMed ID: 33713214
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Vitiligo: Translational research and effective therapeutic strategies.
    Thakur V; Bishnoi A; Vinay K; Kumaran SM; Parsad D
    Pigment Cell Melanoma Res; 2021 Jul; 34(4):814-826. PubMed ID: 33756039
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients.
    van den Boorn JG; Konijnenberg D; Dellemijn TA; van der Veen JP; Bos JD; Melief CJ; Vyth-Dreese FA; Luiten RM
    J Invest Dermatol; 2009 Sep; 129(9):2220-32. PubMed ID: 19242513
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Involvement of non-melanocytic skin cells in vitiligo.
    Bastonini E; Bellei B; Filoni A; Kovacs D; Iacovelli P; Picardo M
    Exp Dermatol; 2019 Jun; 28(6):667-673. PubMed ID: 30582762
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanisms of melanocyte death in vitiligo.
    Chen J; Li S; Li C
    Med Res Rev; 2021 Mar; 41(2):1138-1166. PubMed ID: 33200838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.