BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 3615504)

  • 21. Quasi-elastic laser light scattering from solutions and gels of hemoglobin S.
    Kam Z; Hofrichter J
    Biophys J; 1986 Nov; 50(5):1015-20. PubMed ID: 3790684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the beta4Thr-beta73Asp hydrogen bond in HbS polymer and domain formation from multinucleate-containing clusters.
    Adachi K; Ding M; Surrey S
    Biochemistry; 2008 May; 47(19):5441-9. PubMed ID: 18419131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo polymerization of sickle-cell hemoglobin: a theoretical study.
    Makhijani VB; Cokelet GR
    Blood Cells; 1994; 20(1):169-83; discussion 184-90. PubMed ID: 7994059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscosity studies of deoxyhemoglobin S: evidence for formation of microaggregates during the lag phase.
    Danish EH; Harris JW
    J Lab Clin Med; 1983 Apr; 101(4):515-26. PubMed ID: 6833825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sickle-cell haemoglobin polymerization: is it the primary pathogenic event of sickle-cell anaemia?
    Vekilov PG
    Br J Haematol; 2007 Oct; 139(2):173-84. PubMed ID: 17897293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural link between polymerization and sickle cell disease.
    Mirchev R; Ferrone FA
    J Mol Biol; 1997 Feb; 265(5):475-9. PubMed ID: 9048942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular polymerization of sickle hemoglobin. Effects of cell heterogeneity.
    Noguchi CT; Torchia DA; Schechter AN
    J Clin Invest; 1983 Sep; 72(3):846-52. PubMed ID: 6886006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overview of pathophysiology and rationale for treatment of sickle cell anemia.
    Rodgers GP
    Semin Hematol; 1997 Jul; 34(3 Suppl 3):2-7. PubMed ID: 9317195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques.
    Ferrone FA; Hofrichter J; Eaton WA
    J Mol Biol; 1985 Jun; 183(4):591-610. PubMed ID: 4020872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.
    Brujan EA
    Ultrasonics; 2008 Sep; 48(5):423-6. PubMed ID: 18378271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymerization of deoxy-sickle cell hemoglobin in high-phosphate buffer.
    Wang Z; Kishchenko G; Chen Y; Josephs R
    J Struct Biol; 2000 Sep; 131(3):197-209. PubMed ID: 11052892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Universal metastability of sickle hemoglobin polymerization.
    Weng W; Aprelev A; Briehl RW; Ferrone FA
    J Mol Biol; 2008 Apr; 377(4):1228-35. PubMed ID: 18308336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase separation in binary polymer/liquid crystal mixtures: network breaking and domain growth by coalescence-induced coalescence.
    Demyanchuk I; Wieczorek SA; Hołyst R
    J Phys Chem B; 2006 May; 110(20):9869-75. PubMed ID: 16706441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers.
    Adachi K; Asakura T
    Blood Cells; 1982; 8(2):213-24. PubMed ID: 6186320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for carbon monoxide binding to sickle cell polymers during melting.
    Aroutiounian SK; Louderback JG; Ballas SK; Kim-Shapiro DB
    Biophys Chem; 2001 Jul; 91(2):167-81. PubMed ID: 11429206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves.
    Hofrichter J
    J Mol Biol; 1986 Jun; 189(3):553-71. PubMed ID: 3783684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical description of the spatial dependence of sickle hemoglobin polymerization.
    Zhou HX; Ferrone FA
    Biophys J; 1990 Sep; 58(3):695-703. PubMed ID: 2207259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of sickle haemoglobin polymerization in single red cells.
    Coletta M; Hofrichter J; Ferrone FA; Eaton WA
    Nature; 1982 Nov; 300(5888):194-7. PubMed ID: 7133139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Heterogeneity of the spatial distribution of the primordial organic substance as an initial stage of biological evolution].
    Zhuravlev IuN; Tuzinkevich AV; Frisman EIa
    Biofizika; 2011; 56(1):143-9. PubMed ID: 21442897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The growth of sickle hemoglobin polymers.
    Aprelev A; Liu Z; Ferrone FA
    Biophys J; 2011 Aug; 101(4):885-91. PubMed ID: 21843479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.