BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36155096)

  • 1. Complex architectural control of ice-templated collagen scaffolds using a predictive model.
    Cyr JA; Husmann A; Best SM; Cameron RE
    Acta Biomater; 2022 Nov; 153():260-272. PubMed ID: 36155096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A design protocol for tailoring ice-templated scaffold structure.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    J R Soc Interface; 2014 Mar; 11(92):20130958. PubMed ID: 24402916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.
    Pot MW; Faraj KA; Adawy A; van Enckevort WJ; van Moerkerk HT; Vlieg E; Daamen WF; van Kuppevelt TH
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8495-505. PubMed ID: 25822583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():141-7. PubMed ID: 24582233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair.
    Browe DC; Díaz-Payno PJ; Freeman FE; Schipani R; Burdis R; Ahern DP; Nulty JM; Guler S; Randall LD; Buckley CT; Brama PAJ; Kelly DJ
    Acta Biomater; 2022 Apr; 143():266-281. PubMed ID: 35278686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the intrinsic permeability of ice-templated collagen scaffolds as a function of their structural and mechanical properties.
    Mohee L; Offeddu GS; Husmann A; Oyen ML; Cameron RE
    Acta Biomater; 2019 Jan; 83():189-198. PubMed ID: 30366136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic freeze-cast collagen scaffolds for tissue regeneration: How processing conditions affect structure and properties in the dry and fully hydrated states.
    Divakar P; Yin K; Wegst UGK
    J Mech Behav Biomed Mater; 2019 Feb; 90():350-364. PubMed ID: 30399564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering crystal growth and annealing in ice-templated scaffolds.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    J Mater Sci; 2015; 50(23):7537-7543. PubMed ID: 26412872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing collagen scaffold compliance with native myocardial strains using an ex-vivo cardiac model: the physio-mechanical influence of scaffold architecture and attachment method.
    Cyr JA; Burdett C; Pürstl JT; Thompson R; Troughton SC; Sinha S; Best SM; Cameron RE
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38942187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Mold Geometry on Pore Size in Freeze-Cast Chitosan-Alginate Scaffolds for Tissue Engineering.
    Rouhollahi A; Ilegbusi O; Florczyk S; Xu K; Foroosh H
    Ann Biomed Eng; 2020 Mar; 48(3):1090-1102. PubMed ID: 31654152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds.
    Brougham CM; Levingstone TJ; Shen N; Cooney GM; Jockenhoevel S; Flanagan TC; O'Brien FJ
    Adv Healthc Mater; 2017 Nov; 6(21):. PubMed ID: 28758358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomaterials; 2010 Aug; 31(22):5825-35. PubMed ID: 20452015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications.
    Joukhdar H; Seifert A; Jüngst T; Groll J; Lord MS; Rnjak-Kovacina J
    Adv Mater; 2021 Aug; 33(34):e2100091. PubMed ID: 34236118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing for the design and fabrication of polymer-based gradient scaffolds.
    Bracaglia LG; Smith BT; Watson E; Arumugasaamy N; Mikos AG; Fisher JP
    Acta Biomater; 2017 Jul; 56():3-13. PubMed ID: 28342878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering.
    Francis NL; Hunger PM; Donius AE; Riblett BW; Zavaliangos A; Wegst UG; Wheatley MA
    J Biomed Mater Res A; 2013 Dec; 101(12):3493-503. PubMed ID: 23596011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds.
    Herrera A; Hellwig J; Leemhuis H; von Klitzing R; Heschel I; Duda GN; Petersen A
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109760. PubMed ID: 31349443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bamboo-inspired tubular scaffolds with functional gradients.
    Yin K; Mylo MD; Speck T; Wegst UGK
    J Mech Behav Biomed Mater; 2020 Oct; 110():103826. PubMed ID: 32957175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic collagen scaffolds with anisotropic pore architecture.
    Davidenko N; Gibb T; Schuster C; Best SM; Campbell JJ; Watson CJ; Cameron RE
    Acta Biomater; 2012 Feb; 8(2):667-76. PubMed ID: 22005330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.