BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36155096)

  • 21. Spatiotemporally controlled microchannels of periodontal mimic scaffolds.
    Park CH; Kim KH; Rios HF; Lee YM; Giannobile WV; Seol YJ
    J Dent Res; 2014 Dec; 93(12):1304-12. PubMed ID: 25216511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering.
    Xia Z; Yu X; Jiang X; Brody HD; Rowe DW; Wei M
    Acta Biomater; 2013 Jul; 9(7):7308-19. PubMed ID: 23567944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ice-templating of anisotropic structures with high permeability.
    Pawelec KM; van Boxtel HA; Kluijtmans SGJM
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():628-636. PubMed ID: 28482572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications.
    Bicho D; Canadas RF; Gonçalves C; Pina S; Reis RL; Oliveira JM
    J Biomater Sci Polym Ed; 2021 Oct; 32(15):1966-1982. PubMed ID: 34228590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.
    Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM
    Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Programmable scaffolds with aligned porous structures for cell cultured meat.
    Chen Y; Zhang W; Ding X; Ding S; Tang C; Zeng X; Wang J; Zhou G
    Food Chem; 2024 Jan; 430():137098. PubMed ID: 37562260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities.
    Flauder S; Gbureck U; Müller FA
    Acta Biomater; 2014 Dec; 10(12):5148-5155. PubMed ID: 25159370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach.
    Clearfield D; Nguyen A; Wei M
    J Biomed Mater Res A; 2018 Apr; 106(4):948-958. PubMed ID: 29115031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect.
    Bai H; Wang D; Delattre B; Gao W; De Coninck J; Li S; Tomsia AP
    Acta Biomater; 2015 Jul; 20():113-119. PubMed ID: 25871536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tensile properties of freeze-cast collagen scaffolds: How processing conditions affect structure and performance in the dry and fully hydrated states.
    Caruso I; Yin K; Divakar P; Wegst UGK
    J Mech Behav Biomed Mater; 2023 Aug; 144():105897. PubMed ID: 37343356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds.
    Rowland CR; Colucci LA; Guilak F
    Biomaterials; 2016 Jun; 91():57-72. PubMed ID: 26999455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds].
    Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting.
    Frank MB; Naleway SE; Haroush T; Liu CH; Siu SH; Ng J; Torres I; Ismail A; Karandikar K; Porter MM; Graeve OA; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():484-492. PubMed ID: 28532056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic solutes impact collagen scaffold bioactivity.
    Pawelec KM; Husmann A; Wardale RJ; Best SM; Cameron RE
    J Mater Sci Mater Med; 2015 Feb; 26(2):91. PubMed ID: 25649518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of heat-transfer capability on micropore structure of freeze-drying alginate scaffold.
    Wang C; Jiang W; Zuo W; Han G; Zhang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():944-949. PubMed ID: 30274131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states.
    Varley MC; Neelakantan S; Clyne TW; Dean J; Brooks RA; Markaki AE
    Acta Biomater; 2016 Mar; 33():166-175. PubMed ID: 26827778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mimicking Transmural Helical Cardiomyofibre Orientation Using Bouligand-like Pore Structures in Ice-Templated Collagen Scaffolds.
    Zhang HL; Sinha S; Cameron RE; Best SM
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A bioinspired 3D shape olibanum-collagen-gelatin scaffolds with tunable porous microstructure for efficient neural tissue regeneration.
    Ghorbani F; Zamanian A; Kermanian F; Shamoosi A
    Biotechnol Prog; 2020 Jan; 36(1):e2918. PubMed ID: 31576679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in ice templating: from biomimetic composites to cell culture scaffolds and tissue engineering.
    Qin K; Parisi C; Fernandes FM
    J Mater Chem B; 2021 Jan; 9(4):889-907. PubMed ID: 33331386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.