These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36155097)

  • 1. Hybrid discrete-continuum multiscale model of tissue growth and remodeling.
    Gacek E; Mahutga RR; Barocas VH
    Acta Biomater; 2023 Jun; 163():7-24. PubMed ID: 36155097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.
    Thomas VS; Lai V; Amini R
    Acta Biomater; 2019 Aug; 94():524-535. PubMed ID: 31229629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale simulations suggest a protective role of neo-adventitia in abdominal aortic aneurysms.
    Dalbosco M; Carniel TA; Fancello EA; Holzapfel GA
    Acta Biomater; 2022 Jul; 146():248-258. PubMed ID: 35526737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model.
    Mousavi SJ; Farzaneh S; Avril S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1895-1913. PubMed ID: 31201620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thick-walled fluid-solid-growth model of abdominal aortic aneurysm evolution: application to a patient-specific geometry.
    Grytsan A; Watton PN; Holzapfel GA
    J Biomech Eng; 2015 Mar; 137(3):. PubMed ID: 25473877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanobiological model of arterial growth and remodeling.
    Keshavarzian M; Meyer CA; Hayenga HN
    Biomech Model Mechanobiol; 2018 Feb; 17(1):87-101. PubMed ID: 28823079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for arterial adaptation combining microstructural collagen remodeling and 3D tissue growth.
    Machyshyn IM; Bovendeerd PH; van de Ven AA; Rongen PM; van de Vosse FN
    Biomech Model Mechanobiol; 2010 Dec; 9(6):671-87. PubMed ID: 20300950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.
    Frösen J; Cebral J; Robertson AM; Aoki T
    Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Keshavarzian M; Meyer CA; Hayenga HN
    Tissue Eng Part C Methods; 2019 Nov; 25(11):641-654. PubMed ID: 31392930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulations of the nonsymmetric growth and remodeling of arteries under axial twisting.
    Han HC; Liu Q; Baek S
    J Biomech; 2022 Jul; 140():111165. PubMed ID: 35667148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High-Fidelity 3D Micromechanical Model of Ventricular Myocardium.
    Li DS; Mendiola EA; Avazmohammadi R; Sachse FB; Sacks MS
    Funct Imaging Model Heart; 2021 Jun; 12738():168-177. PubMed ID: 34368813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery.
    Sáez P; García A; Peña E; Gasser TC; Martínez MA
    Acta Biomater; 2016 Mar; 33():183-93. PubMed ID: 26827780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new finite-element shell model for arterial growth and remodeling after stent implantation.
    Laubrie JD; Mousavi JS; Avril S
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3282. PubMed ID: 31773919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of differing material properties in media and adventitia on arterial adaptation--application to aneurysm formation and rupture.
    Schmid H; Grytsan A; Poshtan E; Watton PN; Itskov M
    Comput Methods Biomech Biomed Engin; 2013; 16(1):33-53. PubMed ID: 22149119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms.
    Niestrawska JA; Regitnig P; Viertler C; Cohnert TU; Babu AR; Holzapfel GA
    Acta Biomater; 2019 Apr; 88():149-161. PubMed ID: 30735809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta.
    Martufi G; Gasser TC
    J Biomech; 2011 Sep; 44(14):2544-50. PubMed ID: 21862020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling of cardiac growth and remodeling in pressure overloaded hearts-Linking microstructure to organ phenotype.
    Niestrawska JA; Augustin CM; Plank G
    Acta Biomater; 2020 Apr; 106():34-53. PubMed ID: 32058078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Modeling of Blood Flow in Simulated Abdominal Aortic Aneurysm.
    Gonzalez-Urquijo M; de Zamacona RG; Mendoza AKM; Iribarren MZ; Ibarra EG; Bencomo MDM; Fabiani MA
    Vasc Endovascular Surg; 2021 Oct; 55(7):677-683. PubMed ID: 33902355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of fiber dispersion on the mechanical response of aortic tissues in health and disease: a computational study.
    Niestrawska JA; Ch Haspinger D; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(2):99-112. PubMed ID: 29436874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.