These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36155097)

  • 21. An Agent-Based Discrete Collagen Fiber Network Model of Dynamic Traction Force-Induced Remodeling.
    Reinhardt JW; Gooch KJ
    J Biomech Eng; 2018 May; 140(5):. PubMed ID: 28975252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling.
    Oomen PJA; Loerakker S; van Geemen D; Neggers J; Goumans MTH; van den Bogaerdt AJ; Bogers AJJC; Bouten CVC; Baaijens FPT
    Acta Biomater; 2016 Jan; 29():161-169. PubMed ID: 26537200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fiber engagement accounts for geometry-dependent annulus fibrosus mechanics: A multiscale, Structure-Based Finite Element Study.
    Zhou M; Werbner B; O'Connell GD
    J Mech Behav Biomed Mater; 2021 Mar; 115():104292. PubMed ID: 33453608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue.
    Nikpasand M; Mahutga RR; Bersie-Larson LM; Gacek E; Barocas VH
    J Elast; 2021 Aug; 145(1-2):295-319. PubMed ID: 36380845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artery buckling analysis using a four-fiber wall model.
    Liu Q; Wen Q; Mottahedi M; Han HC
    J Biomech; 2014 Aug; 47(11):2790-6. PubMed ID: 24972920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.
    Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D
    Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. About prestretch in homogenized constrained mixture models simulating growth and remodeling in patient-specific aortic geometries.
    Laubrie JD; Mousavi SJ; Avril S
    Biomech Model Mechanobiol; 2022 Apr; 21(2):455-469. PubMed ID: 35067825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiscale agent-based modeling of restenosis after percutaneous transluminal angioplasty: Effects of tissue damage and hemodynamics on cellular activity.
    Corti A; Colombo M; Migliavacca F; Berceli SA; Casarin S; Rodriguez Matas JF; Chiastra C
    Comput Biol Med; 2022 Aug; 147():105753. PubMed ID: 35797890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms.
    Jamaleddin Mousavi S; Jayendiran R; Farzaneh S; Campisi S; Viallon M; Croisille P; Avril S
    Comput Methods Programs Biomed; 2021 Jun; 205():106107. PubMed ID: 33933713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow.
    Erdemir A; Bennetts C; Davis S; Reddy A; Sibole S
    Interface Focus; 2015 Apr; 5(2):20140081. PubMed ID: 25844153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning.
    Linka K; Cavinato C; Humphrey JD; Cyron CJ
    Acta Biomater; 2022 Jul; 147():63-72. PubMed ID: 35643194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls.
    Stylianopoulos T; Barocas VH
    J Biomech Eng; 2007 Aug; 129(4):611-8. PubMed ID: 17655483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrated computational approach for aortic mechanics including geometric, histological and chemico-physical data.
    Bianchi D; Marino M; Vairo G
    J Biomech; 2016 Aug; 49(12):2331-40. PubMed ID: 26916511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dysfunction in elastic fiber formation in fibulin-5 null mice abrogates the evolution in mechanical response of carotid arteries during maturation.
    Wan W; Gleason RL
    Am J Physiol Heart Circ Physiol; 2013 Mar; 304(5):H674-86. PubMed ID: 23241326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Association Between Geometry and Wall Stress in Emergently Repaired Abdominal Aortic Aneurysms.
    Chauhan SS; Gutierrez CA; Thirugnanasambandam M; De Oliveira V; Muluk SC; Eskandari MK; Finol EA
    Ann Biomed Eng; 2017 Aug; 45(8):1908-1916. PubMed ID: 28444478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Risky interpretations across the length scales: continuum vs. discrete models for soft tissue mechanobiology.
    Stracuzzi A; Britt BR; Mazza E; Ehret AE
    Biomech Model Mechanobiol; 2022 Apr; 21(2):433-454. PubMed ID: 34985590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale model predicts tissue-level failure from collagen fiber-level damage.
    Hadi MF; Sander EA; Barocas VH
    J Biomech Eng; 2012 Sep; 134(9):091005. PubMed ID: 22938372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.