These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 36155340)
1. Exogenous 5-aminolevulinic acid alleviates low-temperature injury by regulating glutathione metabolism and β-alanine metabolism in tomato seedling roots. Zhang Z; Zhang Y; Yuan L; Zhou F; Gao Y; Kang Z; Li T; Hu X Ecotoxicol Environ Saf; 2022 Oct; 245():114112. PubMed ID: 36155340 [TBL] [Abstract][Full Text] [Related]
2. Exogenous 5-Aminolevulinic acid improved low-temperature tolerance tomato seedling by regulating starch content and phenylalanine metabolism. Zhang Z; Dang J; Yuan L; Zhang Y; Zhou F; Li T; Hu X Plant Physiol Biochem; 2024 May; 210():108083. PubMed ID: 38615441 [TBL] [Abstract][Full Text] [Related]
3. Exogenous 5-aminolevulinic acid alleviates low-temperature damage by modulating the xanthophyll cycle and nutrient uptake in tomato seedlings. Zhang Z; Yuan L; Ma Y; Kang Z; Zhou F; Gao Y; Yang S; Li T; Hu X Plant Physiol Biochem; 2022 Oct; 189():83-93. PubMed ID: 36058015 [TBL] [Abstract][Full Text] [Related]
4. Crosstalk between 5-Aminolevulinic Acid and Abscisic Acid Adjusted Leaf Iron Accumulation and Chlorophyll Synthesis to Enhance the Cold Tolerance in Kang Z; Zhang Y; Cai X; Zhang Z; Xu Z; Meng X; Li X; Hu X Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445959 [TBL] [Abstract][Full Text] [Related]
5. Exogenous 5-aminolevulinic acid enhanced saline-alkali tolerance in pepper seedlings by regulating photosynthesis, oxidative damage, and glutathione metabolism. Wang X; Yang S; Li B; Chen C; Li J; Wang Y; Du Q; Li M; Wang H; Li J; Wang J; Xiao H Plant Cell Rep; 2024 Oct; 43(11):267. PubMed ID: 39425750 [TBL] [Abstract][Full Text] [Related]
6. H Liu T; Hu X; Zhang J; Zhang J; Du Q; Li J BMC Plant Biol; 2018 Feb; 18(1):34. PubMed ID: 29448924 [TBL] [Abstract][Full Text] [Related]
7. [Effect of 5-aminolevulinic acid on photosynthetic characteristics of tomato seedlings under NaCl stress]. Zhao YY; Yan F; Hu LP; Zhou XT; Zou ZR Ying Yong Sheng Tai Xue Bao; 2014 Oct; 25(10):2919-26. PubMed ID: 25796901 [TBL] [Abstract][Full Text] [Related]
8. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na Wu X; Jia Q; Ji S; Gong B; Li J; Lü G; Gao H BMC Plant Biol; 2020 Oct; 20(1):465. PubMed ID: 33036565 [TBL] [Abstract][Full Text] [Related]
9. Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress. Zhao YY; Yan F; Hu LP; Zhou XT; Zou ZR; Cui LR Genet Mol Res; 2015 Jun; 14(2):6401-12. PubMed ID: 26125845 [TBL] [Abstract][Full Text] [Related]
10. 5-Aminolevulinic acid promotes low-light tolerance by regulating chloroplast ultrastructure, photosynthesis, and antioxidant capacity in tall fescue. Long S; Liu B; Gong J; Wang R; Gao S; Zhu T; Guo H; Liu T; Xu Y Plant Physiol Biochem; 2022 Nov; 190():248-261. PubMed ID: 36152510 [TBL] [Abstract][Full Text] [Related]
11. [Effects of exogenous nitric oxide on ascorbate-glutathione cycle in tomato seedlings roots under copper stress]. Li XY; Wang XF; Lu LF; Yin B; Zhang M; Cui XM Ying Yong Sheng Tai Xue Bao; 2013 Apr; 24(4):1023-30. PubMed ID: 23898661 [TBL] [Abstract][Full Text] [Related]
12. Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. Li J; Hu L; Zhang L; Pan X; Hu X BMC Plant Biol; 2015 Dec; 15():303. PubMed ID: 26715057 [TBL] [Abstract][Full Text] [Related]
13. Potassium and melatonin-mediated regulation of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxalase system accompanying tolerance to cadmium stress in tomato seedlings. Siddiqui MH; Mukherjee S; Kumar R; Alansi S; Shah AA; Kalaji HM; Javed T; Raza A Plant Physiol Biochem; 2022 Jan; 171():49-65. PubMed ID: 34971955 [TBL] [Abstract][Full Text] [Related]
14. Heme is involved in the exogenous ALA-promoted growth and antioxidant defense system of cucumber seedlings under salt stress. Wu Y; Li J; Wang J; Dawuda MM; Liao W; Meng X; Yuan H; Xie J; Tang Z; Lyu J; Yu J BMC Plant Biol; 2022 Jul; 22(1):329. PubMed ID: 35804328 [TBL] [Abstract][Full Text] [Related]
15. Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Siddiqui MH; Alamri S; Alsubaie QD; Ali HM; Khan MN; Al-Ghamdi A; Ibrahim AA; Alsadon A Nitric Oxide; 2020 Jan; 94():95-107. PubMed ID: 31707015 [TBL] [Abstract][Full Text] [Related]
16. GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. Liu T; Du Q; Li S; Yang J; Li X; Xu J; Chen P; Li J; Hu X BMC Plant Biol; 2019 Jul; 19(1):323. PubMed ID: 31319801 [TBL] [Abstract][Full Text] [Related]
17. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. Jahan MS; Shu S; Wang Y; Chen Z; He M; Tao M; Sun J; Guo S BMC Plant Biol; 2019 Oct; 19(1):414. PubMed ID: 31590646 [TBL] [Abstract][Full Text] [Related]
18. 5-ALA Improves the Low Temperature Tolerance of Common Bean Seedlings through a Combination of Hormone Transduction Pathways and Chlorophyll Metabolism. Xue X; Xie M; Zhu L; Wang D; Xu Z; Liang L; Zhang J; Xu L; Zhou P; Ran J; Yu G; Lai Y; Sun B; Tang Y; Li H Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685996 [TBL] [Abstract][Full Text] [Related]
19. Pyramiding ascorbate-glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. Raja V; Wani UM; Wani ZA; Jan N; Kottakota C; Reddy MK; Kaul T; John R Plant Cell Rep; 2022 Mar; 41(3):619-637. PubMed ID: 34383122 [TBL] [Abstract][Full Text] [Related]
20. 5-Aminolevulinic acid modulates antioxidant defense systems and mitigates drought-induced damage in Kentucky bluegrass seedlings. Niu K; Ma X; Liang G; Ma H; Jia Z; Liu W; Yu Q Protoplasma; 2017 Nov; 254(6):2083-2094. PubMed ID: 28321653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]