These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36155668)

  • 1. Egg-adaptive mutations of human influenza H3N2 virus are contingent on natural evolution.
    Liang W; Tan TJC; Wang Y; Lv H; Sun Y; Bruzzone R; Mok CKP; Wu NC
    PLoS Pathog; 2022 Sep; 18(9):e1010875. PubMed ID: 36155668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventing an Antigenically Disruptive Mutation in Egg-Based H3N2 Seasonal Influenza Vaccines by Mutational Incompatibility.
    Wu NC; Lv H; Thompson AJ; Wu DC; Ng WWS; Kadam RU; Lin CW; Nycholat CM; McBride R; Liang W; Paulson JC; Mok CKP; Wilson IA
    Cell Host Microbe; 2019 Jun; 25(6):836-844.e5. PubMed ID: 31151913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of A(H3N2) Neutralizing Antibody Responses Elicited by 2018-2019 Season Quadrivalent Influenza Vaccines Derived from Eggs, Cells, and Recombinant Hemagglutinin.
    Wang W; Alvarado-Facundo E; Vassell R; Collins L; Colombo RE; Ganesan A; Geaney C; Hrncir D; Lalani T; Markelz AE; Maves RC; McClenathan B; Mende K; Richard SA; Schofield C; Seshadri S; Spooner C; Utz GC; Warkentien TE; Levine M; Coles CL; Burgess TH; Eichelberger M; Weiss CD
    Clin Infect Dis; 2021 Dec; 73(11):e4312-e4320. PubMed ID: 32898271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-depth phylogenetic analysis of the hemagglutinin gene of influenza A(H3N2) viruses circulating during the 2016-2017 season revealed egg-adaptive mutations of vaccine strains.
    Galli C; Orsi A; Pariani E; Lai PL; Guarona G; Pellegrinelli L; Ebranati E; Icardi G; Panatto D
    Expert Rev Vaccines; 2020 Jan; 19(1):115-122. PubMed ID: 31875483
    [No Abstract]   [Full Text] [Related]  

  • 5. Nucleoside-Modified mRNA-Based Influenza Vaccines Circumvent Problems Associated with H3N2 Vaccine Strain Egg Adaptation.
    Gouma S; Furey C; Santos JJS; Parkhouse K; Weirick M; Muramatsu H; Pardi N; Fan SHY; Weissman D; Hensley SE
    J Virol; 2023 Jan; 97(1):e0172322. PubMed ID: 36533954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.
    Parker L; Wharton SA; Martin SR; Cross K; Lin Y; Liu Y; Feizi T; Daniels RS; McCauley JW
    J Gen Virol; 2016 Jun; 97(6):1333-1344. PubMed ID: 26974849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Egg-adaptive mutations in H3N2v vaccine virus enhance egg-based production without loss of antigenicity or immunogenicity.
    Barman S; Franks J; Turner JC; Yoon SW; Webster RG; Webby RJ
    Vaccine; 2015 Jun; 33(28):3186-92. PubMed ID: 25999284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains.
    Zost SJ; Parkhouse K; Gumina ME; Kim K; Diaz Perez S; Wilson PC; Treanor JJ; Sant AJ; Cobey S; Hensley SE
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12578-12583. PubMed ID: 29109276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid generation of a well-matched vaccine seed from a modern influenza A virus primary isolate without recourse to eggs.
    Hartgroves LC; Koudstaal W; McLeod C; Moncorgé O; Thompson CI; Ellis J; Bull C; Havenga MJ; Goudsmit J; Barclay WS
    Vaccine; 2010 Apr; 28(17):2973-9. PubMed ID: 20188682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemagglutinin destabilization in H3N2 vaccine reference viruses skews antigenicity and prevents airborne transmission in ferrets.
    Hu M; Kackos C; Banoth B; Ojha CR; Jones JC; Lei S; Li L; Kercher L; Webby RJ; Russell CJ
    Sci Adv; 2023 Mar; 9(13):eadf5182. PubMed ID: 36989367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Egg- or cell culture-derived hemagglutinin mutations impair virus stability and antigen content of inactivated influenza vaccines.
    Nakowitsch S; Waltenberger AM; Wressnigg N; Ferstl N; Triendl A; Kiefmann B; Montomoli E; Lapini G; Sergeeva M; Muster T; Romanova JR
    Biotechnol J; 2014 Mar; 9(3):405-14. PubMed ID: 24323790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Egg Passage Adaptations to Design Better Vaccines for the H3N2 Influenza Virus.
    Liu Y; Chen H; Duan W; Zhang X; He X; Nielsen R; Ma L; Zhai W
    Viruses; 2022 Sep; 14(9):. PubMed ID: 36146872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of an Egg-Adapted Influenza A(H3N2) Virus without Amino Acid Substitutions at the Antigenic Sites of Its Hemagglutinin.
    Kuwahara T; Takashita E; Fujisaki S; Shirakura M; Nakamura K; Kishida N; Takahashi H; Suzuki N; Kawaoka Y; Watanabe S; Odagiri T
    Jpn J Infect Dis; 2018 May; 71(3):234-238. PubMed ID: 29709975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses.
    Wang X; Ilyushina NA; Lugovtsev VY; Bovin NV; Couzens LK; Gao J; Donnelly RP; Eichelberger MC; Wan H
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27807224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine.
    Wu NC; Zost SJ; Thompson AJ; Oyen D; Nycholat CM; McBride R; Paulson JC; Hensley SE; Wilson IA
    PLoS Pathog; 2017 Oct; 13(10):e1006682. PubMed ID: 29059230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of influenza A/Fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics.
    Lu B; Zhou H; Ye D; Kemble G; Jin H
    J Virol; 2005 Jun; 79(11):6763-71. PubMed ID: 15890915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistasis mediates the evolution of the receptor binding mode in recent human H3N2 hemagglutinin.
    Lei R; Liang W; Ouyang WO; Hernandez Garcia A; Kikuchi C; Wang S; McBride R; Tan TJC; Sun Y; Chen C; Graham CS; Rodriguez LA; Shen IR; Choi D; Bruzzone R; Paulson JC; Nair SK; Mok CKP; Wu NC
    Nat Commun; 2024 Jun; 15(1):5175. PubMed ID: 38890325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Antibody Recognition of H3N2 Vaccine and Seasonal Influenza Virus Strains Based on Age, Vaccine Status, and Sex in the 2017-2018 Season.
    Ursin RL; Liu H; Powell HR; Westerbeck JW; Shaw-Saliba K; Sylvia KE; Fenstermacher KJ; Mehoke T; Thielen P; Rothman RE; Pekosz A; Klein SL
    J Infect Dis; 2020 Sep; 222(8):1371-1382. PubMed ID: 32496543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response.
    Chen Z; Zhou H; Jin H
    Vaccine; 2010 May; 28(24):4079-85. PubMed ID: 20399830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serial Passaging of Seasonal H3N2 Influenza A/Singapore/G2-31.1/2014 Virus in MDCK-SIAT1 Cells and Primary Chick Embryo Cells Generates HA D457G Mutation and Other Variants in HA, NA, PB1, PB1-F2, and NS1.
    Aw DZH; Heng KK; Heok JYH; Kong XY; Chen H; Zhang T; Zhai W; Chow VTK
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.