These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36155920)

  • 41. Near-infrared and mid-infrared semiconductor broadband light emitters.
    Hou CC; Chen HM; Zhang JC; Zhuo N; Huang YQ; Hogg RA; Childs DT; Ning JQ; Wang ZG; Liu FQ; Zhang ZY
    Light Sci Appl; 2018; 7():17170. PubMed ID: 30839527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.
    Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K
    ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanostructured, ultrathin silver-based transparent electrode with broadband near-infrared plasmonic resonance.
    Bauch M; Dimopoulos T; Trassl S
    Nanotechnology; 2019 Jun; 30(26):265201. PubMed ID: 30840928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity.
    Lv J; Hou K; Ding D; Wang D; Han B; Gao X; Zhao M; Shi L; Guo J; Zheng Y; Zhang X; Lu C; Huang L; Huang W; Tang Z
    Angew Chem Int Ed Engl; 2017 Apr; 56(18):5055-5060. PubMed ID: 28374577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Near-perfect absorption by photonic crystals with a broadband and omnidirectional impedance-matching property.
    Luo J; Lai Y
    Opt Express; 2019 May; 27(11):15800-15811. PubMed ID: 31163771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Core-shell particles as efficient broadband absorbers in infrared optical range.
    Evlyukhin AB; Nerkararyan KV; Bozhevolnyi SI
    Opt Express; 2019 Jun; 27(13):17474-17481. PubMed ID: 31252706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions.
    Matsumori K; Fujimura R
    Opt Lett; 2018 Jun; 43(12):2981-2984. PubMed ID: 29905739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MoS
    Sun Z; Huang F; Fu Y
    Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical Enhanced Transmission of Double Layer Ultrathin Metallic Films.
    Lang W; Du H; Gao B; Xie T; Wang X
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7381-4. PubMed ID: 26716340
    [TBL] [Abstract][Full Text] [Related]  

  • 52. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexible Full-Inorganic Ultrathin Films with Stable Circularly Polarized Luminescence Covering the Visible to Near-Infrared Region.
    Wu W; Yao W; Zuo L; Li X; Yang X; Liu Y; Tang Z
    Chemphyschem; 2024 Jul; 25(13):e202400138. PubMed ID: 38507137
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue.
    Cao YQ; Chen J; Zhou H; Zhu L; Li X; Cao ZY; Wu D; Li AD
    Nanotechnology; 2015 Jan; 26(2):024002. PubMed ID: 25526542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Broadband optical absorption enhancement in Au-coated ZnO nanotips.
    Ko YH; Yu JS
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6912-8. PubMed ID: 22103098
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergistically enhanced ultraviolet emission of Yb doped ZnO films by using a capping of ultrathin Al and SiO
    Zhang L; Heng CL; Wang X; Su WY; Finstad TG
    Opt Express; 2022 Oct; 30(21):38167-38177. PubMed ID: 36258385
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In Pursuit of 2D Materials for Maximum Optical Response.
    Gupta S; Shirodkar SN; Kutana A; Yakobson BI
    ACS Nano; 2018 Nov; 12(11):10880-10889. PubMed ID: 30226752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chalcogenide-based, all-dielectric, ultrathin metamaterials with perfect, incidence-angle sensitive, mid-infrared absorption: inverse design, analysis, and applications.
    Avrahamy R; Milgrom B; Zohar M; Auslender M
    Nanoscale; 2021 Jul; 13(26):11455-11469. PubMed ID: 34160520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3-5 µm mid-infrared broadband absorbers composed of layered ITO nanorod arrays with high visible light transmittance.
    Li L; Cui Q; Zhang YJ; Li C; Gu TC; Wu Y; Han CQ; Yan CC
    Opt Express; 2022 Jun; 30(13):23840-23851. PubMed ID: 36225057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.