These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36155922)

  • 1. Swelling, collapse and ordering of rod-like microgels in solution: Computer simulation studies.
    Zholudev SI; Gumerov RA; Larina AA; Potemkin II
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):270-278. PubMed ID: 36155922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swelling and Collapse of Cylindrical Polyelectrolyte Microgels.
    Portnov IV; Larina AA; Gumerov RA; Potemkin II
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compression and Ordering of Microgels in Monolayers Formed at Liquid-Liquid Interfaces: Computer Simulation Studies.
    Bushuev NV; Gumerov RA; Bochenek S; Pich A; Richtering W; Potemkin II
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19903-19915. PubMed ID: 32248678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyelectrolyte Microgels at a Liquid-Liquid Interface: Swelling and Long-Range Ordering.
    Gavrilov AA; Richtering W; Potemkin II
    J Phys Chem B; 2019 Oct; 123(40):8590-8598. PubMed ID: 31525049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the 3D Swelling of Microgels on Their 2D Phase Behavior at the Liquid-Liquid Interface.
    Bochenek S; Scotti A; Ogieglo W; Fernández-Rodríguez MÁ; Schulte MF; Gumerov RA; Bushuev NV; Potemkin II; Wessling M; Isa L; Richtering W
    Langmuir; 2019 Dec; 35(51):16780-16792. PubMed ID: 31782927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polymer microgel at a liquid-liquid interface: theory vs. computer simulations.
    Rumyantsev AM; Gumerov RA; Potemkin II
    Soft Matter; 2016 Aug; 12(32):6799-811. PubMed ID: 27460037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastocapillary interactions of thermoresponsive microgels across the volume phase transition temperatures.
    Chen S; Yong X
    J Colloid Interface Sci; 2021 Feb; 584():275-280. PubMed ID: 33069026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness.
    Nickel AC; Scotti A; Houston JE; Ito T; Crassous J; Pedersen JS; Richtering W
    Nano Lett; 2019 Nov; 19(11):8161-8170. PubMed ID: 31613114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic Microgels Show Their Soft Side.
    Nickel AC; Kratzenberg T; Bochenek S; Schmidt MM; Rudov AA; Falkenstein A; Potemkin II; Crassous JJ; Richtering W
    Langmuir; 2022 May; 38(17):5063-5080. PubMed ID: 34586813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression and Ordering of Hollow Microgels in Monolayers Formed at Liquid-Liquid Interfaces.
    Bushuev NV; Gumerov RA; Rudov AA; Potemkin II
    Langmuir; 2023 Sep; 39(35):12420-12429. PubMed ID: 37611207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Confined Microgel Liquids: Weakened Spatial Confinement Effect by Microgel Particle Compliance.
    Seekell RP; Lin K; Zhu Y
    Langmuir; 2021 May; 37(17):5299-5305. PubMed ID: 33886325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic swelling behavior of surface-charged ionic microgels.
    Alziyadi MO; Denton AR
    J Chem Phys; 2023 Nov; 159(18):. PubMed ID: 37942869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartmentalized Jet Polymerization as a High-Resolution Process to Continuously Produce Anisometric Microgel Rods with Adjustable Size and Stiffness.
    Krüger AJD; Bakirman O; Guerzoni LPB; Jans A; Gehlen DB; Rommel D; Haraszti T; Kuehne AJC; De Laporte L
    Adv Mater; 2019 Dec; 31(49):e1903668. PubMed ID: 31621960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic necking dynamics between attractive microgels.
    Chen S; Pirhadi E; Yong X
    J Colloid Interface Sci; 2022 Jul; 618():283-289. PubMed ID: 35344881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fuzzy sphere morphology is responsible for the increase in light scattering during the shrinkage of thermoresponsive microgels.
    Ponomareva E; Tadgell B; Hildebrandt M; Krüsmann M; Prévost S; Mulvaney P; Karg M
    Soft Matter; 2022 Jan; 18(4):807-825. PubMed ID: 34939641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of microgels: synthesis and effect of the microstructure on the deswelling behavior.
    Moreno AJ; Lo Verso F
    Soft Matter; 2018 Aug; 14(34):7083-7096. PubMed ID: 30118116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of network topology and crosslinker reactivity on microgel structure and ordering at liquid-liquid interface.
    Gumerov RA; Rudyak VY; Gavrilov AA; Chertovich AV; Potemkin II
    Soft Matter; 2022 May; 18(19):3738-3747. PubMed ID: 35506715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wrapping anisotropic microgel particles in lipid membranes: Effects of particle shape and membrane rigidity.
    Liu X; Auth T; Hazra N; Ebbesen MF; Brewer J; Gompper G; Crassous JJ; Sparr E
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2217534120. PubMed ID: 37459547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the realistic computer model of precipitation polymerization microgels.
    Rudyak VY; Kozhunova EY; Chertovich AV
    Sci Rep; 2019 Sep; 9(1):13052. PubMed ID: 31506571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.