These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36156068)
61. Cell-laden hydrogels in integrated microfluidic devices for long-term cell culture and tubulogenesis assays. Gabrielson NP; Desai AV; Mahadik B; Hofmann MC; Kenis PJ; Harley BA Small; 2013 Sep; 9(18):3076-81. PubMed ID: 23468408 [TBL] [Abstract][Full Text] [Related]
62. Aligned and Oriented Collagen Nanocomposite Fibers as Substrates to Activate Fibroblasts. Spiaggia G; Taladriz-Blanco P; Septiadi D; Ortuso RD; Lee A; Trappe V; Rothen-Rutishauser B; Petri-Fink A ACS Appl Bio Mater; 2021 Dec; 4(12):8316-8324. PubMed ID: 35005948 [TBL] [Abstract][Full Text] [Related]
63. Directed growth of adult human white matter stem cell-derived neurons on aligned fibrillar collagen. Lanfer B; Hermann A; Kirsch M; Freudenberg U; Reuner U; Werner C; Storch A Tissue Eng Part A; 2010 Apr; 16(4):1103-13. PubMed ID: 19860550 [TBL] [Abstract][Full Text] [Related]
64. In vitro characterization of a bone marrow stem cell-seeded collagen gel composite for soft tissue grafts: effects of fiber number and serum concentration. Lewus KE; Nauman EA Tissue Eng; 2005; 11(7-8):1015-22. PubMed ID: 16144437 [TBL] [Abstract][Full Text] [Related]
65. Magnetic Nanoparticle-Mediated Orientation of Collagen Hydrogels for Engineering of Tendon-Mimetic Constructs. Wright AL; Righelli L; Broomhall TJ; Lamont HC; El Haj AJ Front Bioeng Biotechnol; 2022; 10():797437. PubMed ID: 35372293 [TBL] [Abstract][Full Text] [Related]
66. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Huang G; Wang L; Wang S; Han Y; Wu J; Zhang Q; Xu F; Lu TJ Biofabrication; 2012 Dec; 4(4):042001. PubMed ID: 23164720 [TBL] [Abstract][Full Text] [Related]
67. Microstructural densification and alignment by aspiration-ejection influence cancer cell interactions with three-dimensional collagen networks. Huynh RN; Yousof M; Ly KL; Gombedza FC; Luo X; Bandyopadhyay BC; Raub CB Biotechnol Bioeng; 2020 Jun; 117(6):1826-1838. PubMed ID: 32073148 [TBL] [Abstract][Full Text] [Related]
68. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Del Amo C; Borau C; Movilla N; Asín J; García-Aznar JM Integr Biol (Camb); 2017 Apr; 9(4):339-349. PubMed ID: 28300261 [TBL] [Abstract][Full Text] [Related]
69. Screening of perfused combinatorial 3D microenvironments for cell culture. Lopes D; Fernandes C; Nóbrega JM; Patrício SG; Oliveira MB; Mano JF Acta Biomater; 2019 Sep; 96():222-236. PubMed ID: 31255663 [TBL] [Abstract][Full Text] [Related]
70. Engineering fiber anisotropy within natural collagen hydrogels. Ahmed A; Joshi IM; Mansouri M; Ahamed NNN; Hsu MC; Gaborski TR; Abhyankar VV Am J Physiol Cell Physiol; 2021 Jun; 320(6):C1112-C1124. PubMed ID: 33852366 [TBL] [Abstract][Full Text] [Related]
71. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Humayun M; Chow CW; Young EWK Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473 [TBL] [Abstract][Full Text] [Related]
72. Development of an Anisotropically Organized Brain dECM Hydrogel-Based 3D Neuronal Culture Platform for Recapitulating the Brain Microenvironment in Vivo. Seo Y; Jeong S; Chung JJ; Kim SH; Choi N; Jung Y ACS Biomater Sci Eng; 2020 Jan; 6(1):610-620. PubMed ID: 33463191 [TBL] [Abstract][Full Text] [Related]
73. Cell encapsulation in a magnetically aligned collagen-GAG copolymer microenvironment. Novak T; Voytik-Harbin SL; Neu CP Acta Biomater; 2015 Jan; 11():274-82. PubMed ID: 25257315 [TBL] [Abstract][Full Text] [Related]
74. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Wang H; Abhilash AS; Chen CS; Wells RG; Shenoy VB Biophys J; 2014 Dec; 107(11):2592-603. PubMed ID: 25468338 [TBL] [Abstract][Full Text] [Related]
75. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Hsu MC; Mansouri M; Ahamed NNN; Larson SM; Joshi IM; Ahmed A; Borkholder DA; Abhyankar VV Sci Rep; 2022 Jun; 12(1):10769. PubMed ID: 35750792 [TBL] [Abstract][Full Text] [Related]
76. Establishment and validation of an efficient method for the 3D culture of osteoclasts in vitro. Faqeer A; Liu J; Zhang L; Wang C; Zhou G; Zhang Y J Dent; 2024 May; 144():104957. PubMed ID: 38527517 [TBL] [Abstract][Full Text] [Related]
77. Scalable alignment of three-dimensional cellular constructs in a microfluidic chip. Anene-Nzelu CG; Peh KY; Fraiszudeen A; Kuan YH; Ng SH; Toh YC; Leo HL; Yu H Lab Chip; 2013 Oct; 13(20):4124-33. PubMed ID: 23969512 [TBL] [Abstract][Full Text] [Related]
78. Engineering controllable architecture in matrigel for 3D cell alignment. Jang JM; Tran SH; Na SC; Jeon NL ACS Appl Mater Interfaces; 2015 Feb; 7(4):2183-8. PubMed ID: 25585718 [TBL] [Abstract][Full Text] [Related]
79. Micro-structured materials and mechanical cues in 3D collagen gels. Phillips JB; Brown R Methods Mol Biol; 2011; 695():183-96. PubMed ID: 21042973 [TBL] [Abstract][Full Text] [Related]
80. Hydrogels as artificial matrices for cell seeding in microfluidic devices. Akther F; Little P; Li Z; Nguyen NT; Ta HT RSC Adv; 2020 Nov; 10(71):43682-43703. PubMed ID: 35519701 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]