These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36156223)

  • 1. A carbon dots-enhanced laccase-based electrochemical sensor for highly sensitive detection of dopamine in human serum.
    Wu R; Yu S; Chen S; Dang Y; Wen SH; Tang J; Zhou Y; Zhu JJ
    Anal Chim Acta; 2022 Oct; 1229():340365. PubMed ID: 36156223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Electrochemical Sensor for Dopamine Detection Based on Self-Assembled Mixed Surfactants on Gold Nanoparticles Deposited Graphene Oxide.
    Uppachai P; Srijaranai S; Poosittisak S; Md Isa I; Mukdasai S
    Molecules; 2020 May; 25(11):. PubMed ID: 32485804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid.
    Guan JF; Zou J; Liu YP; Jiang XY; Yu JG
    Ecotoxicol Environ Saf; 2020 Sep; 201():110872. PubMed ID: 32559693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real samples sensitive dopamine sensor based on poly 1,3-benzothiazol-2-yl((4-carboxlicphenyl)hydrazono)acetonitrile on a glassy carbon electrode.
    Alsoghier HM; Abd-Elsabour M; Alhamzani AG; Abou-Krisha MM; Assaf HF
    Sci Rep; 2024 Jul; 14(1):16601. PubMed ID: 39025924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electrochemistry of dopamine on gold-Agaricus bisporus laccase enzyme electrode: characterization and quantitative detection.
    Shervedani RK; Amini A
    Bioelectrochemistry; 2012 Apr; 84():25-31. PubMed ID: 22137204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine.
    Palanisamy S; Thirumalraj B; Chen SM; Ali MA; Al-Hemaid FM
    J Colloid Interface Sci; 2015 Jun; 448():251-6. PubMed ID: 25744858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium cobalt phosphate electrode for the simultaneous determination of ascorbic acid, dopamine, and serum uric acid by differential pulse voltammetry.
    Xu Y; Meng Z; Meng Y; Li X; Xiao D
    Mikrochim Acta; 2021 May; 188(6):190. PubMed ID: 33991256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microplasma-enabled carbon dots composited with multi-walled carbon nanotubes for dopamine detection.
    Zhou J; Xia Y; Zou Z; Yang Q; Jiang X; Xiong X
    Anal Chim Acta; 2023 Jan; 1237():340631. PubMed ID: 36442944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple strategy for sensitive detection of dopamine using CdTe QDs modified glassy carbon electrode.
    Yu HW; Zhang Z; Jiang JH; Pan HZ; Chang D
    J Clin Lab Anal; 2018 Mar; 32(3):. PubMed ID: 28940690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine.
    Lin Y; Zhang Z; Zhao L; Wang X; Yu P; Su L; Mao L
    Biosens Bioelectron; 2010 Feb; 25(6):1350-5. PubMed ID: 19926273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation.
    Oh JW; Yoon YW; Heo J; Yu J; Kim H; Kim TH
    Talanta; 2016 Jan; 147():453-9. PubMed ID: 26592632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid.
    Yang Y; Li M; Zhu Z
    Talanta; 2019 Aug; 201():295-300. PubMed ID: 31122426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.
    Ku S; Palanisamy S; Chen SM
    J Colloid Interface Sci; 2013 Dec; 411():182-6. PubMed ID: 24064005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode.
    Kalambate PK; Rawool CR; Karna SP; Srivastava AK
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():453-61. PubMed ID: 27612735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(glycine)/graphene oxide modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid, guanine and adenine.
    He S; He P; Zhang X; Zhang X; Liu K; Jia L; Dong F
    Anal Chim Acta; 2018 Nov; 1031():75-82. PubMed ID: 30119746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dopamine sensor based on a methoxypolyethylene glycol polymer covalently modified glassy carbon electrode.
    Wu Y; Cui L; Liu Y; Lv G; Pu T; Liu D; He X
    Analyst; 2013 Feb; 138(4):1204-11. PubMed ID: 23295305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor.
    Vasilescu I; Eremia SA; Kusko M; Radoi A; Vasile E; Radu GL
    Biosens Bioelectron; 2016 Jan; 75():232-7. PubMed ID: 26319166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite.
    Wang J; Yang B; Zhong J; Yan B; Zhang K; Zhai C; Shiraishi Y; Du Y; Yang P
    J Colloid Interface Sci; 2017 Jul; 497():172-180. PubMed ID: 28284071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide.
    Tang J; Jiang S; Liu Y; Zheng S; Bai L; Guo J; Wang J
    Mikrochim Acta; 2018 Oct; 185(10):486. PubMed ID: 30276484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the exocellular fungal biopolymer botryosphaeran for laccase-biosensor architecture and application to determine dopamine and spironolactone.
    Coelho JH; Eisele APP; Valezi CF; Mattos GJ; Schirmann JG; Dekker RFH; Barbosa-Dekker AM; Sartori ER
    Talanta; 2019 Nov; 204():475-483. PubMed ID: 31357322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.