These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 36156314)

  • 1. High-throughput kinetics in drug discovery.
    Pinto MF; Sirina J; Holliday ND; McWhirter CL
    SLAS Discov; 2024 Jul; 29(5):100170. PubMed ID: 38964171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Automated Analysis Workflow for MRS Studies.
    Zöllner HJ; Davies-Jenkins CW; Lee EG; Hendrickson TJ; Clarke WT; Edden RAE; Wisnowski JL; Gudmundson AT; Oeltzschner G
    J Med Syst; 2023 Jul; 47(1):69. PubMed ID: 37418036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance.
    Huber SP; Zoupanos S; Uhrin M; Talirz L; Kahle L; Häuselmann R; Gresch D; Müller T; Yakutovich AV; Andersen CW; Ramirez FF; Adorf CS; Gargiulo F; Kumbhar S; Passaro E; Johnston C; Merkys A; Cepellotti A; Mounet N; Marzari N; Kozinsky B; Pizzi G
    Sci Data; 2020 Sep; 7(1):300. PubMed ID: 32901044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction Kinetics using a Chemputable Framework for Data Collection and Analysis.
    Matysiak BM; Thomas D; Cronin L
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202315207. PubMed ID: 38155102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress and prospects for accelerating materials science with automated and autonomous workflows.
    Stein HS; Gregoire JM
    Chem Sci; 2019 Nov; 10(42):9640-9649. PubMed ID: 32153744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biofoundry workflow for the identification of genetic determinants of microbial growth inhibition.
    Moffat AD; Elliston A; Patron NJ; Truman AW; Carrasco Lopez JA
    Synth Biol (Oxf); 2021; 6(1):ysab004. PubMed ID: 33623825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow.
    Ozik J; Collier N; Wozniak JM; Macal C; Cockrell C; Friedman SH; Ghaffarizadeh A; Heiland R; An G; Macklin P
    BMC Bioinformatics; 2018 Dec; 19(Suppl 18):483. PubMed ID: 30577742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Automated Robotic Interface for Assays: Facilitating Machine Learning in Drug Discovery by the Automation of Physicochemical Property Assays.
    Wu NP; Wang W; Gadiagellan D; Counsell M; Hamidi NK; Koike Y; Nguyen HQ
    ACS Omega; 2024 Jun; 9(23):24948-24958. PubMed ID: 38882107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swiss CAT+, a Data-driven Infrastructure for Accelerated Catalysts Discovery and Optimization.
    Laveille P; Miéville P; Chatterjee S; Clerc E; Cousty JC; De Nanteuil F; Lam E; Mariano E; Ramirez A; Randrianarisoa U; Villat K; Copéret C; Cramer N
    Chimia (Aarau); 2023 Mar; 77(3):154-158. PubMed ID: 38047820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation.
    Sheng H; Sun J; Rodríguez O; Hoar BB; Zhang W; Xiang D; Tang T; Hazra A; Min DS; Doyle AG; Sigman MS; Costentin C; Gu Q; Rodríguez-López J; Liu C
    Nat Commun; 2024 Mar; 15(1):2781. PubMed ID: 38555303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greening automation: Wash and Re-use of disposable 384-well liquid handling tips to enable sustainable high-throughput vaccine development.
    Pedrazzi B; Treyer A; Cohen R; Bowman A; Acevedo-Skrip J; Kearns K; Westover D; Loughney JW
    SLAS Technol; 2023 Oct; 28(5):375-379. PubMed ID: 37327946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Purification in Drug Discovery: Scaling New Heights of Productivity.
    Jones M; Goodyear RL
    ACS Med Chem Lett; 2023 Jul; 14(7):916-919. PubMed ID: 37465307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How the Monty Hall problem is similar to the false discovery rate in high-throughput data analysis.
    Li JJ
    Nat Biotechnol; 2023 Jun; 41(6):754-755. PubMed ID: 37198440
    [No Abstract]   [Full Text] [Related]  

  • 14. Correction to "Random control selection for conducting high-throughput adverse drug events screening using large-scale longitudinal health data".
    CPT Pharmacometrics Syst Pharmacol; 2024 Jul; 13(7):1280. PubMed ID: 38938014
    [No Abstract]   [Full Text] [Related]  

  • 15. High-throughput mechanistic screening of non-equilibrium inhibitors by a fully automated data analysis pipeline in early drug-discovery.
    Srinivasan B; Flórez Weidinger JD; Zhai X; Lemercier G; Ikeda T; Brewer M; Zhang B; Heyse S; Wingfield J; Steigele S
    SLAS Discov; 2022 Dec; 27(8):460-470. PubMed ID: 36156314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust CETSA data analysis automation workflow for routine screening.
    Florez Weidinger JD; Pfreundschuh M; Zörb D; Yee A; Heyse S; Bärenz F; Steigele S
    SLAS Discov; 2024 Jul; 29(5):100172. PubMed ID: 38969289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-equilibrium modalities of inhibition: Characterizing irreversible inhibition for the ErbB receptor family members.
    Srinivasan B
    Methods Enzymol; 2023; 690():85-108. PubMed ID: 37858541
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.