BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36156409)

  • 1. Molecular Crowding Electrolytes for Stable Proton Batteries.
    Wu S; Chen J; Su Z; Guo H; Zhao T; Jia C; Stansby J; Tang J; Rawal A; Fang Y; Ho J; Zhao C
    Small; 2022 Nov; 18(45):e2202992. PubMed ID: 36156409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Water-in-Sugar" Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage.
    Su Z; Chen J; Ren W; Guo H; Jia C; Yin S; Ho J; Zhao C
    Small; 2021 Oct; 17(40):e2102375. PubMed ID: 34499420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries.
    Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C
    Small; 2022 Jun; 18(22):e2201449. PubMed ID: 35557499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
    Luo JY; Cui WJ; He P; Xia YY
    Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular crowding electrolytes for high-voltage aqueous batteries.
    Xie J; Liang Z; Lu YC
    Nat Mater; 2020 Sep; 19(9):1006-1011. PubMed ID: 32313263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes.
    Chen L; Gu Q; Zhou X; Lee S; Xia Y; Liu Z
    Sci Rep; 2013; 3():1946. PubMed ID: 23736113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limiting Interfacial Free Water and Proton Concentration by Hydrogel Electrolytes for Stable MoO
    Qin Z; Li X; Dong Q; Qi K; Chen S; Zhu Y
    Small; 2024 Mar; ():e2400108. PubMed ID: 38511540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries.
    Su Z; Guo H; Zhao C
    Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlayer Engineering of α-MoO
    Zhang H; Wu W; Liu Q; Yang F; Shi X; Liu X; Yu M; Lu X
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):896-903. PubMed ID: 33000516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries.
    Ihlefeld JF; Clem PG; Doyle BL; Kotula PG; Fenton KR; Apblett CA
    Adv Mater; 2011 Dec; 23(47):5663-7. PubMed ID: 22057430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Charge Storage in Aza-Based Covalent Organic Frameworks by Tuning Electrolyte Proton Activity.
    Tian Z; Kale VS; Shi Z; Yin J; Kandambeth S; Wang Y; Emwas AH; Lei Y; Guo X; Ming J; Wang W; Alsadun N; Shekhah O; Eddaoudi M; Alshareef HN
    ACS Nano; 2023 Jul; 17(14):13961-13973. PubMed ID: 37428125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries.
    Yan M; Qu W; Su Q; Chen S; Xing Y; Huang Y; Chen N; Li Y; Li L; Wu F; Chen R
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13950-13958. PubMed ID: 32125148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun hierarchical LiV3O8 nanofibers assembled from nanosheets with exposed {100} facets and their enhanced performance in aqueous lithium-ion batteries.
    Liang L; Zhou M; Xie Y
    Chem Asian J; 2012 Mar; 7(3):565-71. PubMed ID: 22246636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.
    Yoo E; Zhou H
    ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.
    Ma R; Shao L; Wu K; Shui M; Wang D; Pan J; Long N; Ren Y; Shu J
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8615-27. PubMed ID: 23927499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonflammable perfluoropolyether-based electrolytes for lithium batteries.
    Wong DH; Thelen JL; Fu Y; Devaux D; Pandya AA; Battaglia VS; Balsara NP; DeSimone JM
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3327-31. PubMed ID: 24516123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 1.9-V all-organic battery-supercapacitor hybrid device with high rate capability and wide temperature tolerance in a metal-free water-in-saltelectrolyte.
    Tsai HH; Lin TJ; Vedhanarayanan B; Tsai CC; Chen TY; Ji X; Lin TW
    J Colloid Interface Sci; 2022 Apr; 612():76-87. PubMed ID: 34979412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries.
    Shim J; Lee JW; Bae KY; Kim HJ; Yoon WY; Lee JC
    ChemSusChem; 2017 May; 10(10):2274-2283. PubMed ID: 28374480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.