BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36156536)

  • 1. Fabrication and Use of Dry Macroporous Alginate Scaffolds for Viral Transduction of T Cells.
    VanBlunk M; Agarwalla P; Pandit S; Brudno Y
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36156536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption rate governs cell transduction in dry macroporous scaffolds.
    VanBlunk M; Srikanth V; Pandit SS; Kuznetsov AV; Brudno Y
    Biomater Sci; 2023 Mar; 11(7):2372-2382. PubMed ID: 36744434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold-Mediated Static Transduction of T Cells for CAR-T Cell Therapy.
    Agarwalla P; Ogunnaike EA; Ahn S; Ligler FS; Dotti G; Brudno Y
    Adv Healthc Mater; 2020 Jul; 9(14):e2000275. PubMed ID: 32592454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinoculation and retronectin highly enhance the gene transduction efficiency of Mucin-1-specific chimeric antigen receptor (CAR) in human primary T cells.
    Rajabzadeh A; Hamidieh AA; Rahbarizadeh F
    BMC Mol Cell Biol; 2021 Nov; 22(1):57. PubMed ID: 34814824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomaterial platform for T cell-specific gene delivery.
    Pandit S; Smith BE; Birnbaum ME; Brudno Y
    Acta Biomater; 2024 Mar; 177():157-164. PubMed ID: 38364929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High efficiency closed-system gene transfer using automated spinoculation.
    Remley VA; Jin J; Sarkar S; Moses L; Prochazkova M; Cai Y; Shao L; Liu H; Fuksenko T; Jin P; Stroncek DF; Highfill SL
    J Transl Med; 2021 Nov; 19(1):474. PubMed ID: 34819105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of CAR-T Cells by Lentiviral Transduction.
    Okuma A
    Methods Mol Biol; 2021; 2312():3-14. PubMed ID: 34228281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A
    J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Media evaluation for production and expansion of anti-CD19 chimeric antigen receptor T cells.
    Alnabhan R; Gaballa A; Mörk LM; Mattsson J; Uhlin M; Magalhaes I
    Cytotherapy; 2018 Jul; 20(7):941-951. PubMed ID: 29859774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified process for the production of anti-CD19-CAR-engineered T cells.
    Tumaini B; Lee DW; Lin T; Castiello L; Stroncek DF; Mackall C; Wayne A; Sabatino M
    Cytotherapy; 2013 Nov; 15(11):1406-15. PubMed ID: 23992830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of canine CD20 chimeric antigen receptor T cell manufacturing and in vitro cytotoxic activity against B-cell lymphoma.
    Sakai O; Igase M; Mizuno T
    Vet Comp Oncol; 2020 Dec; 18(4):739-752. PubMed ID: 32329214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Retronectin-Mediated T-Cell Activation on Expansion and Phenotype of CD19-Specific Chimeric Antigen Receptor T Cells.
    Stock S; Hoffmann JM; Schubert ML; Wang L; Wang S; Gong W; Neuber B; Gern U; Schmitt A; Müller-Tidow C; Dreger P; Schmitt M; Sellner L
    Hum Gene Ther; 2018 Oct; 29(10):1167-1182. PubMed ID: 30024314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.
    Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E
    Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifactorial optimization of gammaretroviral gene transfer into human T lymphocytes for clinical application.
    Quintás-Cardama A; Yeh RK; Hollyman D; Stefanski J; Taylor C; Nikhamin Y; Imperato G; Sadelain M; Rivière I; Brentjens RJ
    Hum Gene Ther; 2007 Dec; 18(12):1253-60. PubMed ID: 18052719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications.
    Naghieh S; Sarker MD; Abelseth E; Chen X
    J Mech Behav Biomed Mater; 2019 May; 93():183-193. PubMed ID: 30802775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation.
    Han LH; Lai JH; Yu S; Yang F
    Biomaterials; 2013 Jun; 34(17):4251-8. PubMed ID: 23489920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterials in Chimeric Antigen Receptor T-Cell Process Development.
    Cardle II; Cheng EL; Jensen MC; Pun SH
    Acc Chem Res; 2020 Sep; 53(9):1724-1738. PubMed ID: 32786336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Optimization of CAR-T cell culture system and lentivirus transduction conditions].
    Wang H; Pan J; Jiang D; Qu Y; Li Y; Li G; Chu Y; Zhang X; Xu G
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2020 May; 36(5):390-397. PubMed ID: 32696750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering.
    Shachar M; Tsur-Gang O; Dvir T; Leor J; Cohen S
    Acta Biomater; 2011 Jan; 7(1):152-62. PubMed ID: 20688198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.