These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 36156661)

  • 81. Collectively encoding protein properties enriches protein language models.
    An J; Weng X
    BMC Bioinformatics; 2022 Nov; 23(1):467. PubMed ID: 36348281
    [TBL] [Abstract][Full Text] [Related]  

  • 82. DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language Processing.
    Gao Y; Dligach D; Miller T; Caskey J; Sharma B; Churpek MM; Afshar M
    J Biomed Inform; 2023 Feb; 138():104286. PubMed ID: 36706848
    [TBL] [Abstract][Full Text] [Related]  

  • 83. BatteryDataExtractor: battery-aware text-mining software embedded with BERT models.
    Huang S; Cole JM
    Chem Sci; 2022 Oct; 13(39):11487-11495. PubMed ID: 36348711
    [TBL] [Abstract][Full Text] [Related]  

  • 84. BioWordVec, improving biomedical word embeddings with subword information and MeSH.
    Zhang Y; Chen Q; Yang Z; Lin H; Lu Z
    Sci Data; 2019 May; 6(1):52. PubMed ID: 31076572
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.
    Ahmed Z; Zeeshan S; Dandekar T
    Database (Oxford); 2016; 2016():. PubMed ID: 27538578
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Using distant supervision to augment manually annotated data for relation extraction.
    Su P; Li G; Wu C; Vijay-Shanker K
    PLoS One; 2019; 14(7):e0216913. PubMed ID: 31361753
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Named Entity Aware Transfer Learning for Biomedical Factoid Question Answering.
    Peng K; Yin C; Rong W; Lin C; Zhou D; Xiong Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2365-2376. PubMed ID: 33974546
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Evaluating sentence representations for biomedical text: Methods and experimental results.
    Tawfik NS; Spruit MR
    J Biomed Inform; 2020 Apr; 104():103396. PubMed ID: 32147441
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Towards Transfer Learning Techniques-BERT, DistilBERT, BERTimbau, and DistilBERTimbau for Automatic Text Classification from Different Languages: A Case Study.
    Silva Barbon R; Akabane AT
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365883
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Can natural language processing models extract and classify instances of interpersonal violence in mental healthcare electronic records: an applied evaluative study.
    Botelle R; Bhavsar V; Kadra-Scalzo G; Mascio A; Williams MV; Roberts A; Velupillai S; Stewart R
    BMJ Open; 2022 Feb; 12(2):e052911. PubMed ID: 35172999
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Protocol for a reproducible experimental survey on biomedical sentence similarity.
    Lara-Clares A; Lastra-Díaz JJ; Garcia-Serrano A
    PLoS One; 2021; 16(3):e0248663. PubMed ID: 33760855
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biomedical Literature Mining and Its Components.
    Raja K
    Methods Mol Biol; 2022; 2496():1-16. PubMed ID: 35713856
    [TBL] [Abstract][Full Text] [Related]  

  • 93. deepBioWSD: effective deep neural word sense disambiguation of biomedical text data.
    Pesaranghader A; Matwin S; Sokolova M; Pesaranghader A
    J Am Med Inform Assoc; 2019 May; 26(5):438-446. PubMed ID: 30811548
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus.
    Alnazzawi N; Thompson P; Batista-Navarro R; Ananiadou S
    BMC Med Inform Decis Mak; 2015; 15 Suppl 2(Suppl 2):S3. PubMed ID: 26099853
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Approaches to verb subcategorization for biomedicine.
    Lippincott T; Rimell L; Verspoor K; Korhonen A
    J Biomed Inform; 2013 Apr; 46(2):212-27. PubMed ID: 23276747
    [TBL] [Abstract][Full Text] [Related]  

  • 96. When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification.
    Li X; Yuan W; Peng D; Mei Q; Wang Y
    BMC Med Inform Decis Mak; 2022 Apr; 21(Suppl 9):377. PubMed ID: 35382811
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Regularizing transformers with deep probabilistic layers.
    Aguilera AC; Olmos PM; Artés-Rodríguez A; Pérez-Cruz F
    Neural Netw; 2023 Apr; 161():565-574. PubMed ID: 36812832
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Deep learning with language models improves named entity recognition for PharmaCoNER.
    Sun C; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):602. PubMed ID: 34920700
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A Review of Recent Work in Transfer Learning and Domain Adaptation for Natural Language Processing of Electronic Health Records.
    Laparra E; Mascio A; Velupillai S; Miller T
    Yearb Med Inform; 2021 Aug; 30(1):239-244. PubMed ID: 34479396
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Sequence-to-sequence pretraining for a less-resourced Slovenian language.
    Ulčar M; Robnik-Šikonja M
    Front Artif Intell; 2023; 6():932519. PubMed ID: 37056912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.