BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36156662)

  • 41. Dual-emission hydrogel nanoparticles with linear and reversible luminescence-response to pH for intracellular fluorescent probes.
    Liu H; Zhang Y; Zhao Y; Zhao Y; Yang X; Han L; Xin J; Yang B; Lin Q
    Talanta; 2020 May; 211():120755. PubMed ID: 32070577
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging.
    Huang H; Xu D; Liu M; Jiang R; Mao L; Huang Q; Wan Q; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():862-867. PubMed ID: 28576060
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Directed self-assembly of fluorescence responsive nanoparticles and their use for real-time surface and cellular imaging.
    Cheung S; O'Shea DF
    Nat Commun; 2017 Dec; 8(1):1885. PubMed ID: 29192150
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives.
    Zhang X; Wang K; Liu M; Zhang X; Tao L; Chen Y; Wei Y
    Nanoscale; 2015 Jul; 7(27):11486-508. PubMed ID: 26010238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry.
    Wu Y; Liu J; Ma J; Liu Y; Wang Y; Wu D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14396-405. PubMed ID: 27197838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery.
    Zavgorodnya O; Carmona-Moran CA; Kozlovskaya V; Liu F; Wick TM; Kharlampieva E
    J Colloid Interface Sci; 2017 Nov; 506():589-602. PubMed ID: 28759859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Printed Hydrogel-Based Sensors for Quantifying UV Exposure.
    Finny AS; Jiang C; Andreescu S
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43911-43920. PubMed ID: 32870644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved near infrared-mediated hydrogel formation using diacrylated Pluronic F127-coated upconversion nanoparticles.
    Gwon K; Jo EJ; Sahu A; Lee JY; Kim MG; Tae G
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():77-84. PubMed ID: 29853148
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of tetraphenylethylene-based fluorescent oligosaccharide probes for detection of influenza virus.
    Kato T; Kawaguchi A; Nagata K; Hatanaka K
    Biochem Biophys Res Commun; 2010 Mar; 394(1):200-4. PubMed ID: 20188703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications.
    Cao QY; Jiang R; Liu M; Wan Q; Xu D; Tian J; Huang H; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():411-416. PubMed ID: 28866182
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform.
    Imani KBC; Jo A; Choi GM; Kim B; Chung JW; Lee HS; Yoon J
    Macromol Rapid Commun; 2022 Jan; 43(2):e2100579. PubMed ID: 34708464
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fluorescent nanoparticles based on AIE fluorogens for bioimaging.
    Yan L; Zhang Y; Xu B; Tian W
    Nanoscale; 2016 Feb; 8(5):2471-87. PubMed ID: 26478255
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of sugars, surfactant, and tangential flow filtration on the freeze-drying of poly(lactic acid) nanoparticles.
    Hirsjärvi S; Peltonen L; Hirvonen J
    AAPS PharmSciTech; 2009; 10(2):488-94. PubMed ID: 19381823
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in photoresponsive printing inks for security encoding applications.
    Abdelrahman MS; Khattab TA
    Luminescence; 2024 Jun; 39(6):e4800. PubMed ID: 38923447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer.
    Xia Q; Chen Z; Zhou Y; Liu R
    Nanotheranostics; 2019; 3(2):156-165. PubMed ID: 31008024
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Water-borne, durable and multicolor silicon nanoparticles/sodium alginate inks for anticounterfeiting applications.
    Xie J; Sun X; Guo X; Feng X; Chen K; Shu X; Wang C; Sun W; Liu Y; Shang B; Liu X; Chen D; Xu W; Li Z
    Carbohydr Polym; 2023 Feb; 301(Pt A):120307. PubMed ID: 36436869
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.
    Zeng G; Liu M; Jiang R; Huang Q; Huang L; Wan Q; Dai Y; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():154-159. PubMed ID: 29208273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D Printing of Aniline Tetramer-Grafted-Polyethylenimine and Pluronic F127 Composites for Electroactive Scaffolds.
    Dong SL; Han L; Du CX; Wang XY; Li LH; Wei Y
    Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28045217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chitin nanocrystals assisted 3D printing of polycitrate thermoset bioelastomers.
    Gu S; Tian Y; Liang K; Ji Y
    Carbohydr Polym; 2021 Mar; 256():117549. PubMed ID: 33483056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Green Synthesis of Self-Passivated Fluorescent Carbon Dots Derived from Rice Bran for Degradation of Methylene Blue and Fluorescent Ink Applications.
    Jothi VK; Ganesan K; Natarajan A; Rajaram A
    J Fluoresc; 2021 Mar; 31(2):427-436. PubMed ID: 33411228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.