BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36156771)

  • 1. Discovery of Aptamers Against Cell Surface Markers Using Ligand-Guided Selection.
    Williams N; Patel R; Mallikaratchy P
    Methods Mol Biol; 2023; 2570():13-38. PubMed ID: 36156771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-guided selection of aptamers against T-cell Receptor-cluster of differentiation 3 (TCR-CD3) expressed on Jurkat.E6 cells.
    Zumrut HE; Ara MN; Maio GE; Van NA; Batool S; Mallikaratchy PR
    Anal Biochem; 2016 Nov; 512():1-7. PubMed ID: 27519622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An
    Williams NB; Batool S; Zumrut HE; Patel R; Sosa G; Jamal M; Mallikaratchy P
    Biochemistry; 2022 Aug; 61(15):1600-1613. PubMed ID: 35829681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural optimization of an aptamer generated from Ligand-Guided Selection (LIGS) resulted in high affinity variant toward mIgM expressed on Burkitt's lymphoma cell lines.
    Zümrüt HE; Batool S; Van N; George S; Bhandari S; Mallikaratchy P
    Biochim Biophys Acta Gen Subj; 2017 Jul; 1861(7):1825-1832. PubMed ID: 28363693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-Guided Selection of Target-Specific Aptamers: A Screening Technology for Identifying Specific Aptamers Against Cell-Surface Proteins.
    Zumrut HE; Ara MN; Fraile M; Maio G; Mallikaratchy P
    Nucleic Acid Ther; 2016 Jun; 26(3):190-8. PubMed ID: 27148897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-Guided Selection with Artificially Expanded Genetic Information Systems against TCR-CD3ε.
    Zumrut H; Yang Z; Williams N; Arizala J; Batool S; Benner SA; Mallikaratchy P
    Biochemistry; 2020 Feb; 59(4):552-562. PubMed ID: 31880917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Ligand-Receptor Interactions and In Vitro Evolution for Streamlined Discovery of Artificial Nucleic Acid Ligands.
    Zumrut HE; Batool S; Argyropoulos KV; Williams N; Azad R; Mallikaratchy PR
    Mol Ther Nucleic Acids; 2019 Sep; 17():150-163. PubMed ID: 31255977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimerization of an aptamer generated from Ligand-guided selection (LIGS) yields a high affinity scaffold against B-cells.
    Batool S; Argyropoulos KV; Azad R; Okeoma P; Zumrut H; Bhandari S; Dekhang R; Mallikaratchy PR
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):232-240. PubMed ID: 30342154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells.
    Hamula CL; Peng H; Wang Z; Newbigging AM; Tyrrell GJ; Li XF; Le XC
    J Mol Evol; 2015 Dec; 81(5-6):194-209. PubMed ID: 26538121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating aptamers by cell-SELEX for applications in molecular medicine.
    Ye M; Hu J; Peng M; Liu J; Liu J; Liu H; Zhao X; Tan W
    Int J Mol Sci; 2012; 13(3):3341-3353. PubMed ID: 22489154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Cell-Type-Specific RNA Aptamers via Live Cell-Based SELEX.
    Herrera A; Zhou J; Song MS; Rossi JJ
    Methods Mol Biol; 2023; 2666():317-346. PubMed ID: 37166674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking the emergence of high affinity aptamers for rhVEGF165 during capillary electrophoresis-systematic evolution of ligands by exponential enrichment using high throughput sequencing.
    Jing M; Bowser MT
    Anal Chem; 2013 Nov; 85(22):10761-70. PubMed ID: 24125636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand Guided Selection (LIGS) of Artificial Nucleic Acid Ligands against Cell Surface Targets.
    Zumrut HE; Mallikaratchy PR
    ACS Appl Bio Mater; 2020 May; 3():2545-2552. PubMed ID: 34013167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Cell-Type-Specific RNA Aptamers Via Live Cell-Based SELEX.
    Zhou J; Rossi JJ
    Methods Mol Biol; 2016; 1421():191-214. PubMed ID: 26965267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamers: new arrows to target dendritic cells.
    Ganji A; Varasteh A; Sankian M
    J Drug Target; 2016; 24(1):1-12. PubMed ID: 25950603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current approaches in SELEX: An update to aptamer selection technology.
    Darmostuk M; Rimpelova S; Gbelcova H; Ruml T
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1141-61. PubMed ID: 25708387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in cell-SELEX technology for aptamer selection.
    Kaur H
    Biochim Biophys Acta Gen Subj; 2018 Oct; 1862(10):2323-2329. PubMed ID: 30059712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers.
    Moon J; Kim G; Park SB; Lim J; Mo C
    Sensors (Basel); 2015 Apr; 15(4):8884-97. PubMed ID: 25884791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures.
    Rahimizadeh K; AlShamaileh H; Fratini M; Chakravarthy M; Stephen M; Shigdar S; Veedu RN
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.