These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36156780)

  • 1. Label-Free Determination of the Kinetic Parameters of Protein-Aptamer Interaction by Surface Plasmon Resonance.
    Dreymann N; Möller A; Menger MM
    Methods Mol Biol; 2023; 2570():141-153. PubMed ID: 36156780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes.
    Lee SJ; Youn BS; Park JW; Niazi JH; Kim YS; Gu MB
    Anal Chem; 2008 Apr; 80(8):2867-73. PubMed ID: 18324839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance.
    Chang AL; McKeague M; Smolke CD
    Methods Enzymol; 2014; 549():451-66. PubMed ID: 25432760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Affinity Determination of Protein-Antibody and Protein-Aptamer Epitopes by Biosensor-Mass Spectrometry Combination.
    Lupu LM; Wiegand P; Holdschick D; Mihoc D; Maeser S; Rawer S; Völklein F; Malek E; Barka F; Knauer S; Uth C; Hennermann J; Kleinekofort W; Hahn A; Barka G; Przybylski M
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Investigation of Protein-Nucleic Acid Interactions by Biosensor Surface Plasmon Resonance.
    Wang S; Poon GM; Wilson WD
    Methods Mol Biol; 2015; 1334():313-32. PubMed ID: 26404159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions.
    Di Primo C; Dausse E; Toulmé JJ
    Methods Mol Biol; 2011; 764():279-300. PubMed ID: 21748648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
    Tang Q; Su X; Loh KP
    J Colloid Interface Sci; 2007 Nov; 315(1):99-106. PubMed ID: 17689549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ biosensing with a surface plasmon resonance fiber grating aptasensor.
    Shevchenko Y; Francis TJ; Blair DA; Walsh R; DeRosa MC; Albert J
    Anal Chem; 2011 Sep; 83(18):7027-34. PubMed ID: 21815621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different label-free imaging high-throughput biosensing systems for aptamer binding measurements using thrombin aptamers.
    Rath C; Burger J; Norval L; Kraemer SD; Gensch N; van der Kooi A; Reinemann C; O'Sullivan C; Svobodova M; Roth G
    Anal Biochem; 2019 Oct; 583():113323. PubMed ID: 31129134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.
    Daniel C; Roupioz Y; Gasparutto D; Livache T; Buhot A
    PLoS One; 2013; 8(9):e75419. PubMed ID: 24069412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-Protein Interactions: Surface Plasmon Resonance.
    Douzi B
    Methods Mol Biol; 2017; 1615():257-275. PubMed ID: 28667619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation the effect of nanoparticles on the structure of aptamers by analyzing the recognition dynamics of aptamer functionalized nanoparticles.
    Jia W; Xie D; Li F; Wu X; Wang R; Yang L; Liu L; Yin W; Chang S
    Anal Chim Acta; 2021 Oct; 1183():338976. PubMed ID: 34627520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer selection by direct microfluidic recovery and surface plasmon resonance evaluation.
    Dausse E; Barré A; Aimé A; Groppi A; Rico A; Ainali C; Salgado G; Palau W; Daguerre E; Nikolski M; Toulmé JJ; Di Primo C
    Biosens Bioelectron; 2016 Jun; 80():418-425. PubMed ID: 26874109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Charged Small Molecule-Aptamer Interactions with Surface Plasmon Resonance.
    Froehlich CE; He J; Haynes CL
    Anal Chem; 2023 Feb; 95(5):2639-2644. PubMed ID: 36704862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies.
    Chang CC
    Biosensors (Basel); 2021 Jul; 11(7):. PubMed ID: 34356703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy.
    Sass S; Stöcklein WFM; Klevesath A; Hurpin J; Menger M; Hille C
    Analyst; 2019 Oct; 144(20):6064-6073. PubMed ID: 31528891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays.
    Zhou WJ; Halpern AR; Seefeld TH; Corn RM
    Anal Chem; 2012 Jan; 84(1):440-5. PubMed ID: 22126812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the interaction between aptamers and human IgE by use of surface plasmon resonance.
    Wang J; Lv R; Xu J; Xu D; Chen H
    Anal Bioanal Chem; 2008 Feb; 390(4):1059-65. PubMed ID: 18084750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding kinetics of human cellular prion detection by DNA aptamers immobilized on a conducting polypyrrole.
    Miodek A; Poturnayová A; Snejdárková M; Hianik T; Korri-Youssoufi H
    Anal Bioanal Chem; 2013 Mar; 405(8):2505-14. PubMed ID: 23318762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and sensitive detection of Nampt (PBEF/visfatin) in human serum using an ssDNA aptamer-based capacitive biosensor.
    Park JW; Kallempudi SS; Niazi JH; Gurbuz Y; Youn BS; Gu MB
    Biosens Bioelectron; 2012; 38(1):233-8. PubMed ID: 22704839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.