These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 36156783)
1. Aptamer-Field-Effect Transistors for Small-Molecule Sensing in Complex Environments. Nakatsuka N Methods Mol Biol; 2023; 2570():187-196. PubMed ID: 36156783 [TBL] [Abstract][Full Text] [Related]
2. Polymeric integration of structure-switching aptamers on transistors for histamine sensing. Shkodra B; Petrelli M; Yang KA; Tagliaferri A; Lugli P; Petti L; Nakatsuka N Faraday Discuss; 2024 Mar; 250(0):43-59. PubMed ID: 37970875 [TBL] [Abstract][Full Text] [Related]
3. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Nakatsuka N; Yang KA; Abendroth JM; Cheung KM; Xu X; Yang H; Zhao C; Zhu B; Rim YS; Yang Y; Weiss PS; Stojanović MN; Andrews AM Science; 2018 Oct; 362(6412):319-324. PubMed ID: 30190311 [TBL] [Abstract][Full Text] [Related]
4. Divalent Cation Dependence Enhances Dopamine Aptamer Biosensing. Nakatsuka N; Abendroth JM; Yang KA; Andrews AM ACS Appl Mater Interfaces; 2021 Mar; 13(8):9425-9435. PubMed ID: 33410656 [TBL] [Abstract][Full Text] [Related]
5. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Gao N; Gao T; Yang X; Dai X; Zhou W; Zhang A; Lieber CM Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14633-14638. PubMed ID: 27930344 [TBL] [Abstract][Full Text] [Related]
6. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Chu CH; Sarangadharan I; Regmi A; Chen YW; Hsu CP; Chang WH; Lee GY; Chyi JI; Chen CC; Shiesh SC; Lee GB; Wang YL Sci Rep; 2017 Jul; 7(1):5256. PubMed ID: 28701708 [TBL] [Abstract][Full Text] [Related]
7. Highly Effective and Efficient Self-Assembled Multilayer-Based Electrode Passivation for Operationally Stable and Reproducible Electrolyte-Gated Transistor Biosensors. Song Y; Song JY; Shim JE; Kim DH; Na HK; You EA; Ha YG ACS Appl Mater Interfaces; 2023 Oct; 15(39):46527-46537. PubMed ID: 37713500 [TBL] [Abstract][Full Text] [Related]
8. Functionalized Organic Thin Film Transistors for Biosensing. Wang N; Yang A; Fu Y; Li Y; Yan F Acc Chem Res; 2019 Feb; 52(2):277-287. PubMed ID: 30620566 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of High-Performance Ultrathin In2O3 Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. Kim J; Rim YS; Chen H; Cao HH; Nakatsuka N; Hinton HL; Zhao C; Andrews AM; Yang Y; Weiss PS ACS Nano; 2015; 9(4):4572-82. PubMed ID: 25798751 [TBL] [Abstract][Full Text] [Related]
10. Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Vu CA; Chen WY Molecules; 2020 Feb; 25(3):. PubMed ID: 32033448 [TBL] [Abstract][Full Text] [Related]
11. Effect of DNA Aptamer Concentration on the Conductivity of a Water-Gated Al:ZnO Thin-Film Transistor-Based Biosensor. Ogurcovs A; Kadiwala K; Sledevskis E; Krasovska M; Plaksenkova I; Butanovs E Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591098 [TBL] [Abstract][Full Text] [Related]
12. Label-free biosensors based on aptamer-modified graphene field-effect transistors. Ohno Y; Maehashi K; Matsumoto K J Am Chem Soc; 2010 Dec; 132(51):18012-3. PubMed ID: 21128665 [TBL] [Abstract][Full Text] [Related]
13. Power and Sensitivity Management of Carbon Nanotube Transistor Glucose Biosensors. He J; Cao X; Liu H; Liang Y; Chen H; Xiao M; Zhang Z ACS Appl Mater Interfaces; 2024 Jan; 16(1):1351-1360. PubMed ID: 38150673 [TBL] [Abstract][Full Text] [Related]
14. Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Chen X; Liu Y; Fang X; Li Z; Pu H; Chang J; Chen J; Mao S Biosens Bioelectron; 2019 Feb; 126():664-671. PubMed ID: 30530212 [TBL] [Abstract][Full Text] [Related]
15. Reduced graphene oxide-based field effect transistors for the detection of E7 protein of human papillomavirus in saliva. Aspermair P; Mishyn V; Bintinger J; Happy H; Bagga K; Subramanian P; Knoll W; Boukherroub R; Szunerits S Anal Bioanal Chem; 2021 Jan; 413(3):779-787. PubMed ID: 32816088 [TBL] [Abstract][Full Text] [Related]
16. Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Lung Khung Y; Narducci D Biosens Bioelectron; 2013 Dec; 50():278-93. PubMed ID: 23872609 [TBL] [Abstract][Full Text] [Related]
17. Experimental comparison of direct and indirect aptamer-based biochemical functionalization of electrolyte-gated graphene field-effect transistors for biosensing applications. Jahromi AK; Shieh H; Low K; Tasnim N; Najjaran H; Hoorfar M Anal Chim Acta; 2022 Aug; 1222():340177. PubMed ID: 35934424 [TBL] [Abstract][Full Text] [Related]
18. Apta-biosensors for nonlabeled real time detection of human IgE based on carbon nanotube field effect transistors. Kim JP; Hong S; Sim SJ J Nanosci Nanotechnol; 2011 May; 11(5):4182-7. PubMed ID: 21780424 [TBL] [Abstract][Full Text] [Related]
19. Biofunctionalized zinc oxide field effect transistors for selective sensing of riboflavin with current modulation. Hagen JA; Kim SN; Bayraktaroglu B; Leedy K; Chávez JL; Kelley-Loughnane N; Naik RR; Stone MO Sensors (Basel); 2011; 11(7):6645-55. PubMed ID: 22163977 [TBL] [Abstract][Full Text] [Related]
20. Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors. Cheung KM; Abendroth JM; Nakatsuka N; Zhu B; Yang Y; Andrews AM; Weiss PS Nano Lett; 2020 Aug; 20(8):5982-5990. PubMed ID: 32706969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]