These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36156829)

  • 1. Cerebral hemodynamic and metabolic dysregulation in the postradiation brain.
    Jain V; de Godoy LL; Mohan S; Chawla S; Learned K; Jain G; Wehrli FW; Alonso-Basanta M
    J Neuroimaging; 2022 Nov; 32(6):1027-1043. PubMed ID: 36156829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging radiation-induced normal tissue injury.
    Robbins ME; Brunso-Bechtold JK; Peiffer AM; Tsien CI; Bailey JE; Marks LB
    Radiat Res; 2012 Apr; 177(4):449-66. PubMed ID: 22348250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI.
    Quarles CC; Bell LC; Stokes AM
    Neuroimage; 2019 Feb; 187():32-55. PubMed ID: 29729392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative cerebral blood volume is a potential biomarker in late delayed radiation-induced brain injury.
    Xie Y; Huang H; Guo J; Zhou D
    J Magn Reson Imaging; 2018 Apr; 47(4):1112-1118. PubMed ID: 28796443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation injury of the brain.
    Valk PE; Dillon WP
    AJNR Am J Neuroradiol; 1991 Jan; 12(1):45-62. PubMed ID: 7502957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches.
    Yablonskiy DA; Sukstanskii AL; He X
    NMR Biomed; 2013 Aug; 26(8):963-86. PubMed ID: 22927123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrast-Enhanced Perfusion MR Imaging to Differentiate Between Recurrent/Residual Brain Neoplasms and Radiation Necrosis.
    Metaweh NAK; Azab AO; El Basmy AAH; Mashhour KN; El Mahdy WM
    Asian Pac J Cancer Prev; 2018 Apr; 19(4):941-948. PubMed ID: 29693348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors.
    Varoquaux A; Rager O; Dulguerov P; Burkhardt K; Ailianou A; Becker M
    Radiographics; 2015; 35(5):1502-27. PubMed ID: 26252192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and functional MRI, MRS, perfusion and diffusion changes after radiosurgery of brain metastasis.
    Kang TW; Kim ST; Byun HS; Jeon P; Kim K; Kim H; Lee JI
    Eur J Radiol; 2009 Dec; 72(3):370-80. PubMed ID: 18829196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroimaging in cerebrovascular disorders: measurement of cerebral physiology after stroke and assessment of stroke recovery.
    Mountz JM; Liu HG; Deutsch G
    Semin Nucl Med; 2003 Jan; 33(1):56-76. PubMed ID: 12605357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic susceptibility contrast-enhanced perfusion MR imaging in late radiation-induced injury of the brain.
    Chan YL; Yeung DK; Leung SF; Lee SF; Ching AS
    Acta Neurochir Suppl; 2005; 95():173-5. PubMed ID: 16463845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging.
    Amemiya S; Kunimatsu A; Saito N; Ohtomo K
    Radiology; 2014 Feb; 270(2):548-55. PubMed ID: 24072777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI of late microstructural and metabolic alterations in radiation-induced brain injuries.
    Chan KC; Khong PL; Cheung MM; Wang S; Cai KX; Wu EX
    J Magn Reson Imaging; 2009 May; 29(5):1013-20. PubMed ID: 19388094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in imaging of brain tumors.
    Sanghvi DA
    Indian J Cancer; 2009; 46(2):82-7. PubMed ID: 19346641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effectiveness of MRI perfusion and fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor: a preliminary retrospective analysis with pathologic correlation in all patients.
    Hatzoglou V; Ulaner GA; Zhang Z; Beal K; Holodny AI; Young RJ
    Clin Imaging; 2013; 37(3):451-7. PubMed ID: 23068052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance techniques in the evaluation of the perinatal brain: recent advances and future directions.
    Huppi PS; Inder TE
    Semin Neonatol; 2001 Apr; 6(2):195-210. PubMed ID: 11483024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiating Radiation Necrosis from Brain Tumor Using Hyperpolarized Carbon-13 MR Metabolic Imaging.
    Park I; Kim S; Pucciarelli D; Song J; Choi JM; Lee KH; Kim YH; Jung S; Yoon W; Nakamura JL
    Mol Imaging Biol; 2021 Jun; 23(3):417-426. PubMed ID: 33442835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of functional imaging in the diagnosis and management of late normal tissue injury.
    Evans ES; Hahn CA; Kocak Z; Zhou SM; Marks LB
    Semin Radiat Oncol; 2007 Apr; 17(2):72-80. PubMed ID: 17395037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Diffusion Tensor Imaging and Magnetic Resonance Perfusion Imaging in Differentiating Recurrent Brain Neoplasm From Radiation Necrosis.
    Masch WR; Wang PI; Chenevert TL; Junck L; Tsien C; Heth JA; Sundgren PC
    Acad Radiol; 2016 May; 23(5):569-76. PubMed ID: 26916251
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.