These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36156897)

  • 1. Uncovering the Complexities of Salt Sensitivity.
    Pollock DM
    Function (Oxf); 2022; 3(3):zqac025. PubMed ID: 36156897
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    J Cardiol; 2018 Jul; 72(1):42-49. PubMed ID: 29544657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prenatal high-salt diet impaired vasodilatation with reprogrammed renin-angiotensin system in offspring rats.
    Liu Y; Qi L; Wu J; Xu T; Yang C; Chen X; Lv J; Xu Z
    J Hypertens; 2018 Dec; 36(12):2369-2379. PubMed ID: 30382958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt intake, endothelial dysfunction, and salt-sensitive hypertension.
    Bragulat E; de la Sierra A
    J Clin Hypertens (Greenwich); 2002; 4(1):41-6. PubMed ID: 11821636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.
    Gordish KL; Kassem KM; Ortiz PA; Beierwaltes WH
    Physiol Rep; 2017 Apr; 5(7):. PubMed ID: 28408634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [On the role of sodium and chlorine in the hypotensive action of low-salt and salt-free diet in hypertension].
    PATRUSHEV VI
    Ter Arkh; 1962 Dec; 34():8-14. PubMed ID: 13941884
    [No Abstract]   [Full Text] [Related]  

  • 7. Salt-sensitive hypertension: lessons from animal models.
    Sanders PW
    Am J Kidney Dis; 1996 Nov; 28(5):775-82. PubMed ID: 9158221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt-loading and nitric oxide inhibition after the menopause.
    Tayebjee MH; Lee KW; Lip GY
    J Hypertens; 2003 Jul; 21(7):1255-7. PubMed ID: 12817168
    [No Abstract]   [Full Text] [Related]  

  • 9. A maternal high salt diet disturbs cardiac and vascular function of offspring.
    Maruyama K; Kagota S; Van Vliet BN; Wakuda H; Shinozuka K
    Life Sci; 2015 Sep; 136():42-51. PubMed ID: 26141995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension.
    Wu J; Agbor LN; Fang S; Mukohda M; Nair AR; Nakagawa P; Sharma A; Morgan DA; Grobe JL; Rahmouni K; Weiss RM; McCormick JA; Sigmund CD
    Cardiovasc Res; 2021 Jan; 117(1):308-319. PubMed ID: 32428209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apocynin and Tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans.
    Ramick MG; Brian MS; Matthews EL; Patik JC; Seals DR; Lennon SL; Farquhar WB; Edwards DG
    Am J Physiol Heart Circ Physiol; 2019 Jul; 317(1):H97-H103. PubMed ID: 31074652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transdermal 17 beta-oestradiol reduces salt sensitivity of blood pressure in postmenopausal women.
    Scuteri A; Lakatta EG; Anderson DE; Fleg JL
    J Hypertens; 2003 Dec; 21(12):2419-20. PubMed ID: 14654763
    [No Abstract]   [Full Text] [Related]  

  • 13. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    Hypertens Res; 2019 Jan; 42(1):6-18. PubMed ID: 30390036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal Dysfunction, Rather Than Nonrenal Vascular Dysfunction, Mediates Salt-Induced Hypertension.
    Hall JE
    Circulation; 2016 Mar; 133(9):894-906. PubMed ID: 26927007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt.
    Tolins JP; Shultz PJ
    Kidney Int; 1994 Jul; 46(1):230-6. PubMed ID: 7523754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide production decreases after salt loading but is not related to blood pressure changes or nitric oxide-mediated vascular responses.
    Dishy V; Sofowora GG; Imamura H; Nishimi Y; Xie HG; Wood AJ; Stein CM
    J Hypertens; 2003 Jan; 21(1):153-7. PubMed ID: 12544447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased salt-sensitivity in endothelial nitric oxide synthase-knockout mice.
    Leonard AM; Chafe LL; Montani JP; Van Vliet BN
    Am J Hypertens; 2006 Dec; 19(12):1264-9. PubMed ID: 17161773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Paradigms of Salt and Hypertension.
    Feng W; Dell'Italia LJ; Sanders PW
    J Am Soc Nephrol; 2017 May; 28(5):1362-1369. PubMed ID: 28220030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A moderately high fat diet promotes salt-sensitive hypertension in obese zucker rats by impairing nitric oxide production.
    Morrison RG; Mills C; Moran AL; Walton CE; Sadek MH; Mangiarua EI; Wehner PS; McCumbee WD
    Clin Exp Hypertens; 2007 Aug; 29(6):369-81. PubMed ID: 17729054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    Curr Opin Nephrol Hypertens; 2018 Mar; 27(2):83-92. PubMed ID: 29278541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.