These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 36157039)
1. A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications. Sun Q; Yu L; Zhang Z; Qian C; Fang H; Wang J; Wu P; Zhu X; Zhang J; Zhong L; He R Front Chem; 2022; 10():958420. PubMed ID: 36157039 [TBL] [Abstract][Full Text] [Related]
2. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications. Maji S; Agarwal T; Das J; Maiti TK Carbohydr Polym; 2018 Jun; 189():115-125. PubMed ID: 29580388 [TBL] [Abstract][Full Text] [Related]
3. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. Jamalpoor Z; Mirzadeh H; Joghataei MT; Zeini D; Bagheri-Khoulenjani S; Nourani MR J Biomed Mater Res A; 2015 May; 103(5):1882-92. PubMed ID: 25195588 [TBL] [Abstract][Full Text] [Related]
6. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Mahmood SK; Zakaria MZAB; Razak ISBA; Yusof LM; Jaji AZ; Tijani I; Hammadi NI Biochem Biophys Rep; 2017 Jul; 10():237-251. PubMed ID: 28955752 [TBL] [Abstract][Full Text] [Related]
8. Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue. Algul D; Sipahi H; Aydin A; Kelleci F; Ozdatli S; Yener FG Int J Biol Macromol; 2015 Aug; 79():363-9. PubMed ID: 25982954 [TBL] [Abstract][Full Text] [Related]
9. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering. Singh YP; Dasgupta S; Bhaskar R J Biomater Sci Polym Ed; 2019 Dec; 30(18):1756-1778. PubMed ID: 31526176 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold. Gu Y; Bai Y; Zhang D J Biomed Mater Res A; 2018 Jul; 106(7):1851-1861. PubMed ID: 29520937 [TBL] [Abstract][Full Text] [Related]
11. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related]
12. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat. Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647 [TBL] [Abstract][Full Text] [Related]
13. Effect of cellulose nanocrystals on chitosan/PVA/nano β-TCP composite scaffold for bone tissue engineering application. Ali A; Bano S; Poojary S; Chaudhary A; Kumar D; Negi YS J Biomater Sci Polym Ed; 2022 Jan; 33(1):1-19. PubMed ID: 34463203 [TBL] [Abstract][Full Text] [Related]
14. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
15. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering. Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474 [TBL] [Abstract][Full Text] [Related]
16. In vitro evaluation of biodegradable nHAP-Chitosan-Gelatin-based scaffold for tissue engineering application. Thariga S; Subashini R; Pavithra S; Meenachi P; Kumar P; Balashanmugam P; Senthil Kumar P IET Nanobiotechnol; 2019 May; 13(3):301-306. PubMed ID: 31053693 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. Samadikuchaksaraei A; Gholipourmalekabadi M; Erfani Ezadyar E; Azami M; Mozafari M; Johari B; Kargozar S; Jameie SB; Korourian A; Seifalian AM J Biomed Mater Res A; 2016 Aug; 104(8):2001-10. PubMed ID: 27027855 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072 [TBL] [Abstract][Full Text] [Related]
19. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Hu Y; Chen J; Fan T; Zhang Y; Zhao Y; Shi X; Zhang Q Colloids Surf B Biointerfaces; 2017 Sep; 157():93-100. PubMed ID: 28578273 [TBL] [Abstract][Full Text] [Related]
20. Development of nanocomposite scaffolds based on TiO Abd-Khorsand S; Saber-Samandari S; Saber-Samandari S Int J Biol Macromol; 2017 Aug; 101():51-58. PubMed ID: 28315764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]