These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36157342)
21. Preliminary Assessment of the Resource and Exploitation Potential of Lower Permian Marine-Continent Transitional Facies Shale Gas in the Huainan Basin, Eastern China, Based on a Comprehensive Understanding of Geological Conditions. Liu H; Yumina DD; Liu J; Hu B; Xu H; Wu H; Shang J; Zheng K; Wei Q; Zhang M; Fang H ACS Omega; 2021 Mar; 6(12):8502-8516. PubMed ID: 33817512 [TBL] [Abstract][Full Text] [Related]
22. A screening approach to improve water management practices in undeveloped shale plays, with application to the transboundary Eagle Ford Formation in northeast Mexico. Hernández-Espriú A; Wolaver B; Arciniega-Esparza S; Scanlon BR; Young MH; Nicot JP; Macías-Medrano S; Breña-Naranjo JA J Environ Manage; 2019 Apr; 236():146-162. PubMed ID: 30726770 [TBL] [Abstract][Full Text] [Related]
23. Refracturing shale gas wells in China: Doubling water consumption for enhanced gas recovery. Shi W; Li J; Huang Z; Feng Y; Hong P; Lei S; Wu Y; Wang J; Guo M Sci Total Environ; 2024 Oct; 946():174407. PubMed ID: 38964416 [TBL] [Abstract][Full Text] [Related]
24. Toward understanding the interaction of shale gas-water-carbon nexus in Sichuan-Chongqing region based on county-level water security evaluation. Chen Y; Hao C; Yang L; Yao L; Gao T; Li J Environ Sci Pollut Res Int; 2023 Sep; 30(44):99326-99344. PubMed ID: 37610545 [TBL] [Abstract][Full Text] [Related]
25. Life cycle carbon footprint of shale gas: review of evidence and implications. Weber CL; Clavin C Environ Sci Technol; 2012 Jun; 46(11):5688-95. PubMed ID: 22545623 [TBL] [Abstract][Full Text] [Related]
26. The Psychological Process of Residents' Acceptance of Local Shale Gas Exploitation in China. Yao L; Sui D; Liu X; Fan H Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32947827 [TBL] [Abstract][Full Text] [Related]
27. Life cycle water consumption for shale gas and conventional natural gas. Clark CE; Horner RM; Harto CB Environ Sci Technol; 2013 Oct; 47(20):11829-36. PubMed ID: 24004382 [TBL] [Abstract][Full Text] [Related]
28. Impact of shale gas development on water resources: a case study in northern poland. Vandecasteele I; Marí Rivero I; Sala S; Baranzelli C; Barranco R; Batelaan O; Lavalle C Environ Manage; 2015 Jun; 55(6):1285-99. PubMed ID: 25877457 [TBL] [Abstract][Full Text] [Related]
29. The water footprint of hydraulic fracturing in Sichuan Basin, China. Zou C; Ni Y; Li J; Kondash A; Coyte R; Lauer N; Cui H; Liao F; Vengosh A Sci Total Environ; 2018 Jul; 630():349-356. PubMed ID: 29482143 [TBL] [Abstract][Full Text] [Related]
30. Multiscale Equation-Oriented Optimization Decreases the Carbon Intensity of Shale Gas to Liquid Fuel Processes. Ghosh K; Salas SD; Garciadiego A; Dunn JB; Dowling AW ACS Sustain Chem Eng; 2024 Jul; 12(28):10351-10362. PubMed ID: 39027727 [TBL] [Abstract][Full Text] [Related]
31. Temporal changes in vegetation around a shale gas development area in a subtropical karst region in southwestern China. Guo Y; Zhang X; Wang Q; Chen H; Du X; Ma Y Sci Total Environ; 2020 Jan; 701():134769. PubMed ID: 31739237 [TBL] [Abstract][Full Text] [Related]
32. Shale Gas Decarbonization in the Permian Basin: Is It Possible? Singh U; Dunn JB ACS Eng Au; 2022 Jun; 2(3):248-256. PubMed ID: 35781934 [TBL] [Abstract][Full Text] [Related]
33. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas. Ahmadi M; John K Sci Total Environ; 2015 Dec; 536():457-467. PubMed ID: 26232756 [TBL] [Abstract][Full Text] [Related]
34. Integrating the impact of large-scale hydraulic engineering with a sustainable groundwater development strategy: A case study of Zhengzhou City, China. Zhang Z; Ma C; Zhang D; Ma Y; Huang P Sci Total Environ; 2022 Sep; 838(Pt 4):156579. PubMed ID: 35690213 [TBL] [Abstract][Full Text] [Related]
35. Process based life-cycle assessment of natural gas from the Marcellus Shale. Dale AT; Khanna V; Vidic RD; Bilec MM Environ Sci Technol; 2013 May; 47(10):5459-66. PubMed ID: 23611587 [TBL] [Abstract][Full Text] [Related]
36. Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. He L; Chen Y; Zhao H; Tian P; Xue Y; Chen L Sci Total Environ; 2018 Jun; 627():1585-1601. PubMed ID: 30857119 [TBL] [Abstract][Full Text] [Related]
37. Evolving shale gas management: water resource risks, impacts, and lessons learned. Rahm BG; Riha SJ Environ Sci Process Impacts; 2014 May; 16(6):1400-12. PubMed ID: 24664241 [TBL] [Abstract][Full Text] [Related]
38. Insight into the Adsorption of Methane on Gas Shales and the Induced Shale Swelling. Tian W; Liu H ACS Omega; 2020 Dec; 5(49):31508-31517. PubMed ID: 33344802 [TBL] [Abstract][Full Text] [Related]
39. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions. Nduagu EI; Gates ID Environ Sci Technol; 2015 Jul; 49(14):8824-32. PubMed ID: 26114481 [TBL] [Abstract][Full Text] [Related]
40. Competitive adsorption phenomenon in shale gas displacement processes. Shi J; Gong L; Sun S; Huang Z; Ding B; Yao J RSC Adv; 2019 Aug; 9(44):25326-25335. PubMed ID: 35530100 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]