These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 36157572)

  • 21. High performance transition metal-based electrocatalysts for green hydrogen production.
    Kwon HR; Park H; Jun SE; Choi S; Jang HW
    Chem Commun (Camb); 2022 Jul; 58(57):7874-7889. PubMed ID: 35766059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances in Defect-Engineered Transition Metal Dichalcogenides for Enhanced Electrocatalytic Hydrogen Evolution: Perfecting Imperfections.
    Tan ZH; Kong XY; Ng BJ; Soo HS; Mohamed AR; Chai SP
    ACS Omega; 2023 Jan; 8(2):1851-1863. PubMed ID: 36687105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Hydrogen Evolution Reactivity of T'-Phase Tungsten Dichalcogenides (WS
    Huang H; Hu G; Hu C; Fan X
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase Control in Inorganic Nanocrystals through Finely Tuned Growth at an Ultrathin Scale.
    Li H; Wang X
    Acc Chem Res; 2019 Mar; 52(3):780-790. PubMed ID: 30747512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General Colloidal Synthesis of Transition-Metal Disulfide Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction.
    Meerbach C; Klemmed B; Spittel D; Bauer C; Park YJ; Hübner R; Jeong HY; Erb D; Shin HS; Lesnyak V; Eychmüller A
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13148-13155. PubMed ID: 32100543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon-Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts.
    Zhang J; Chen G; Müllen K; Feng X
    Adv Mater; 2018 Jul; ():e1800528. PubMed ID: 30043531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent progress in transition metal selenide electrocatalysts for water splitting.
    Xia X; Wang L; Sui N; Colvin VL; Yu WW
    Nanoscale; 2020 Jun; 12(23):12249-12262. PubMed ID: 32514508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strain engineering of electrocatalysts for hydrogen evolution reaction.
    Mao X; Qin Z; Ge S; Rong C; Zhang B; Xuan F
    Mater Horiz; 2023 Feb; 10(2):340-360. PubMed ID: 36541087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual Tuning of Ni-Co-A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution.
    Fang Z; Peng L; Qian Y; Zhang X; Xie Y; Cha JJ; Yu G
    J Am Chem Soc; 2018 Apr; 140(15):5241-5247. PubMed ID: 29608305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction.
    Xie J; Qi J; Lei F; Xie Y
    Chem Commun (Camb); 2020 Oct; 56(80):11910-11930. PubMed ID: 32955040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review.
    Yusuf BA; Yaseen W; Xie M; Zayyan RS; Muhammad AI; Nankya R; Xie J; Xu Y
    Adv Colloid Interface Sci; 2023 Jan; 311():102811. PubMed ID: 36436436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Miao M; Pan J; He T; Yan Y; Xia BY; Wang X
    Chemistry; 2017 Aug; 23(46):10947-10961. PubMed ID: 28474426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase Engineering of Transition Metal Dichalcogenides with Unprecedentedly High Phase Purity, Stability, and Scalability via Molten-Metal-Assisted Intercalation.
    Park S; Kim C; Park SO; Oh NK; Kim U; Lee J; Seo J; Yang Y; Lim HY; Kwak SK; Kim G; Park H
    Adv Mater; 2020 Aug; 32(33):e2001889. PubMed ID: 32627249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting.
    Wang F; Shifa TA; Zhan X; Huang Y; Liu K; Cheng Z; Jiang C; He J
    Nanoscale; 2015 Dec; 7(47):19764-88. PubMed ID: 26578154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review.
    Liu F; Shi C; Guo X; He Z; Pan L; Huang ZF; Zhang X; Zou JJ
    Adv Sci (Weinh); 2022 Jun; 9(18):e2200307. PubMed ID: 35435329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition Metal Phosphide-Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review.
    Weng CC; Ren JT; Yuan ZY
    ChemSusChem; 2020 Jul; 13(13):3357-3375. PubMed ID: 32196958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives.
    Li S; Li E; An X; Hao X; Jiang Z; Guan G
    Nanoscale; 2021 Aug; 13(30):12788-12817. PubMed ID: 34477767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of Hydrogen Evolution Catalytic Activity of Basal Plane in Monolayer Platinum and Palladium Dichalcogenides.
    Huang H; Fan X; Singh DJ; Zheng W
    ACS Omega; 2018 Aug; 3(8):10058-10065. PubMed ID: 31459134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid-State Conversion Synthesis of Advanced Electrocatalysts for Water Splitting.
    Ma X; Shi Y; Wang K; Yu Y; Zhang B
    Chemistry; 2020 Mar; 26(18):3961-3972. PubMed ID: 31702847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.