BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36157748)

  • 1. Transparent Nanocomposites Comprising Ligand-Exchanged CuInS
    Shiraishi M; Iso Y; Isobe T
    ACS Omega; 2022 Sep; 7(37):33039-33045. PubMed ID: 36157748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-Friendly Electrophoretic Deposition of Fluorescent Nanocomposite Films in an Aqueous Dispersion of Hydrophilized Core/Shell CuInS
    Morimoto A; Iso Y; Isobe T
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7780-7789. PubMed ID: 38315976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence color stability of green-emitting InP/ZnS core/shell quantum dots embedded in silica prepared
    Watanabe T; Iso Y; Isobe T; Sasaki H
    RSC Adv; 2018 Jul; 8(45):25526-25533. PubMed ID: 35539768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Synthesis of CuInS
    Li H; Jiang X; Wang A; Chu X; Du Z
    Front Chem; 2020; 8():669. PubMed ID: 33195004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media.
    Heyne B; Arlt K; Geßner A; Richter AF; Döblinger M; Feldmann J; Taubert A; Wedel A
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32957490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent cellulose aerogels containing covalently immobilized (ZnS)
    Wang H; Shao Z; Bacher M; Liebner F; Rosenau T
    Cellulose (Lond); 2013; 20(6):3007-3024. PubMed ID: 26412950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template.
    Parveen S; Paul KK; Das R; Giri PK
    J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-Base Reaction-Assisted Quantum Dot Patterning via Ligand Engineering and Photolithography.
    Bae JH; Kim S; Ahn J; Shin C; Jung BK; Lee YM; Hong YK; Kim W; Ha DH; Ng TN; Kim J; Oh SJ
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47831-47840. PubMed ID: 36255043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS
    Delices A; Moodelly D; Hurot C; Hou Y; Ling WL; Saint-Pierre C; Gasparutto D; Nogues G; Reiss P; Kheng K
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44026-44038. PubMed ID: 32840358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eco-friendly synthesis of CuInS
    Mir IA; Das K; Akhter T; Ranjan R; Patel R; Bohidar HB
    RSC Adv; 2018 Aug; 8(53):30589-30599. PubMed ID: 35546847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of highly luminescent and concentrated quantum dot/poly(methyl methacrylate) nanocomposites by matrix-free methods.
    Yoon C; Kim HJ; Kim MH; Shin K; Kim YJ; Lee K
    Nanotechnology; 2017 Oct; 28(40):405203. PubMed ID: 28805648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of CdSe and CdSe/ZnS Core/Shell Quantum Dots on Singlet Oxygen Production and Cell Toxicity.
    Duong HD; Yang S; Seo YW; Rhee JI
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1568-1576. PubMed ID: 29448631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passivation and Interlayer Effect of Zr(i-PrO)
    Ko M; Yoon S; Eo YJ; Lee KN; Do YR
    Nanoscale Res Lett; 2022 Nov; 17(1):106. PubMed ID: 36344881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl)trimethoxysilane as a capping molecule.
    Li H; Shih WY; Shih WH
    Nanotechnology; 2007 Dec; 18(49):495605. PubMed ID: 20442479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
    Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K
    Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic chip enabled one-step synthesis of biofunctionalized CuInS
    Hu S; Zhang B; Zeng S; Liu L; Yong KT; Ma H; Tang Y
    Lab Chip; 2020 Aug; 20(16):3001-3010. PubMed ID: 32697260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission transformation in CdSe/ZnS quantum dots conjugated to biomolecules.
    Torchynska TV; Polupan G; Vega Macotela LG
    J Photochem Photobiol B; 2017 May; 170():309-313. PubMed ID: 28477576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence Anisotropy as a Reliable Discrimination of Ligand-Asymmetric and Symmetric Mn-Doped ZnS Quantum Dots.
    Zhang Y; Miao L; Wang HF
    Anal Chem; 2016 Oct; 88(19):9714-9719. PubMed ID: 27593598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.