BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36157754)

  • 1. Effect of Mixed Acid Fluid on the Pore Structure of High Rank Coal and Acid Fluid Optimization.
    Wang C; Gao J; Zhang X
    ACS Omega; 2022 Sep; 7(37):33280-33294. PubMed ID: 36157754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Applicability of Reservoir Fractal Characterization in Middle-High Rank Coals with NMR: Implications for Pore-Fracture Structure Evolution within the Coalification Process.
    Hou H; Qin Q; Shao L; Liang G; Tang Y; Zhang H; Li Q; Liu S
    ACS Omega; 2021 Dec; 6(48):32495-32507. PubMed ID: 34901599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Pore-fracture Combination Types in Tectonic Coal Based on Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance.
    Ni X; Zhao Z; Wang B; Li Z
    ACS Omega; 2020 Dec; 5(51):33225-33234. PubMed ID: 33403284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore Structure Characteristics and Adsorption and Desorption Capacity of Coal Rock after Exposure to Clean Fracturing Fluid.
    Zuo W; Zhang W; Liu Y; Han H; Huang C; Jiang W; Mitri H
    ACS Omega; 2022 Jun; 7(25):21407-21417. PubMed ID: 35785274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Field NMR Experimental Study on the Effect of Confining Pressure on the Porous Structure and Connectivity of High-Rank Coal.
    Pi Z; Dong Z; Li R; Wang Y; Li G; Zhang Y; Peng B; Meng L; Fu S; Yin G
    ACS Omega; 2022 Apr; 7(16):14283-14290. PubMed ID: 35573215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Study on Spontaneous Imbibition of Coal Samples of Different Ranks Based on the NMR Relaxation Spectrum.
    Wang N; Du Y; Fu C; Ma X; Zhang X; Wang J; Wang N
    ACS Omega; 2023 Sep; 8(37):33526-33542. PubMed ID: 37744802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineral Characteristics of Low-Rank Coal and the Effects on the Micro- and Nanoscale Pore-Fractures: A Case Study from the Zhundong Coalfield, Northwest China.
    Zhou S; Liu D; Cai Y; Wang Y; Yan D
    J Nanosci Nanotechnol; 2021 Jan; 21(1):460-471. PubMed ID: 33213645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction and seepage simulation of a coal pore-fracture network based on CT technology.
    Jing D; Meng X; Ge S; Zhang T; Ma M; Tong L
    PLoS One; 2021; 16(6):e0252277. PubMed ID: 34166372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Response Law of Coal Pore Structure and Permeability Affected by Acidification Time.
    Qin X; Cao Y; Liu X; Wang L; Nie B
    ACS Omega; 2023 Aug; 8(33):30213-30220. PubMed ID: 37636939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Quantitative Characterization and Seepage Evolution Characteristics of Pores of Loaded Coal Based on NMR.
    Wang Z; Cui H; Wei G; Jia T; Guo J; He X
    ACS Omega; 2021 Nov; 6(43):28983-28991. PubMed ID: 34755000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection Effect of Liquid Nitrogen Freeze-Thaw Cycles on Full Pore Size Distribution of Different Rank Coals.
    Li Y; Ren Z; Song D; Liu W; Wang H; Guo X
    ACS Omega; 2023 Mar; 8(10):9526-9538. PubMed ID: 36936307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the pore and molecular structure evolution of coal exposed to acid mine drainage (AMD).
    Luo JZ; Cai YY; Tang H; Yu J; Zheng LW; Li HH
    Sci Total Environ; 2024 Jan; 906():167836. PubMed ID: 37844642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Petrophysical characterization of high-rank coal by nuclear magnetic resonance: a case study of the Baijiao coal reservoir, SW China.
    Zhang D; Chu Y; Li S; Yang Y; Bai X; Ye C; Wen D
    R Soc Open Sci; 2018 Dec; 5(12):181411. PubMed ID: 30662747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Analysis of Connectivity and Permeability of a Pore-Fracture Structure in Low Permeability Seam of Huainan-Huaibei Coalfield.
    Wang Z; Fang H; Sang S; Guo J; Yu S; Liu H; Xu H
    ACS Omega; 2024 Apr; 9(13):15357-15371. PubMed ID: 38585139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in mineral fraction and pore morphology of coal with acidification treatment: contribution of clay minerals to methane adsorption.
    Wang L; Li Z; Li J; Chen Y; Zhang K; Han X; Xu G
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):114886-114900. PubMed ID: 37875755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal.
    Xie T; Wei Y; Liu Z; Li B; Cao D; Wang A
    ACS Omega; 2023 Aug; 8(34):31246-31255. PubMed ID: 37663515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle Size Effect and Temperature Effect on the Pore Structure of Low-Rank Coal.
    Li T; Wu JJ; Wang XG; Huang H
    ACS Omega; 2021 Mar; 6(8):5865-5877. PubMed ID: 33681625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Investigation on Pore-Fracture Variations in Coal Affected by Carbon Disulfide.
    Zheng C; Li X; Li H; Jiang B; Chen Z
    ACS Omega; 2023 Oct; 8(41):38426-38440. PubMed ID: 37867664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the evolution of the pore structure of low rank coal during spontaneous combustion.
    Wang H; Li J; Zhang Y; Wu Y; Wang Z
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39932-39945. PubMed ID: 36602744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidification-Induced Micronano Mechanical Properties and Microscopic Permeability Enhancement Mechanism of Coal.
    Xie H; Li X; Sui H; Cai J; Xu E; Zhao J
    Langmuir; 2024 Feb; 40(8):4496-4513. PubMed ID: 38347737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.