BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36157856)

  • 1. Ready-to-implement low-carbon retrofit of coal-fired power plants in China: Optimal scenarios selection based on sludge and photovoltaic utilization.
    Xia Y; Deng J; Hu B; Yang Q; Li J; Gu H; Zhou G
    Environ Sci Ecotechnol; 2022 Jan; 9():100147. PubMed ID: 36157856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of ultra-low emission retrofitting on partitioning and emission behavior of chromium in a Chinese coal-fired power plant.
    Tang Q; Chang L; He F; Miao C; Zheng L; Ma D; Wang R; Fu B
    Chemosphere; 2022 Sep; 302():134859. PubMed ID: 35533942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overlooked CO
    Zhang P; Feng K; Yan L; Guo Y; Gao B; Li J
    Environ Sci Ecotechnol; 2024 Jan; 17():100295. PubMed ID: 37529799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of potential, cost, and environmental benefits of CCS-EWR technology for coal-fired power plants in Yellow River Basin of China.
    Xu M; Zhang X; Shen S; Wei S; Fan JL
    J Environ Manage; 2021 Aug; 292():112717. PubMed ID: 34015611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of thallium in pulverized coal utility boiler installations in Southwest China.
    Li Z; Zhou X; Wang Q; Li X; Zhang L; Wang D; He T; Cao Y; Feng X
    J Air Waste Manag Assoc; 2021 Apr; 71(4):488-500. PubMed ID: 33216702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the economy of coal power plants retrofitted with post-combustion and biomass co-firing carbon capture in China.
    Yuan J; Wang Y; Zhang W; Zhang J
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47438-47454. PubMed ID: 36738409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of China's national policies on reducing carbon emissions from coal-fired power plants in the period of the 14th Five-Year Plan.
    Yang R; Wang W
    Heliyon; 2023 Sep; 9(9):e19868. PubMed ID: 37810134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Economic feasibility and policy incentive analysis of Carbon Capture, Utilization, and Storage (CCUS) in coal-fired power plants based on system dynamics.
    Ye J; Yan L; Liu X; Wei F
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37487-37515. PubMed ID: 36572778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refined assessment of size-fractioned particulate matter (PM
    Wu B; Tian H; Hao Y; Liu S; Sun Y; Bai X; Liu W; Lin S; Zhu C; Hao J; Luo L; Zhao S; Guo Z
    Sci Total Environ; 2020 Mar; 706():135735. PubMed ID: 31806313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a regional inventory to characterize polycyclic aromatic hydrocarbon emissions from coal-fired power plants in Anhui, China from 2010 to 2030.
    Wang R; Cai J; Cai F; Xia L; Sun X; Zeng EY
    Environ Pollut; 2021 Mar; 272():115972. PubMed ID: 33187847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Emission Characteristics and Toxicity Effects of Halogenated Polycyclic Aromatic Hydrocarbons from Coal-Fired and Waste Incineration Power Plants].
    Ni XF; Wang RW; Cai FX; Cai JW
    Huan Jing Ke Xue; 2021 Apr; 42(4):1660-1667. PubMed ID: 33742801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-objective optimization of coal-fired power units considering deep peaking regulation in China.
    Feng S; Zhang X; Zhang H
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10756-10774. PubMed ID: 36076139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of coal-fired power plants for energy generation on environment and future implications of energy policy for Turkey.
    Vardar S; Demirel B; Onay TT
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40302-40318. PubMed ID: 35318602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Potential of renewable energy development on abandoned mine areas: A case study in Liao-ning Province, Norheast China].
    Quan SM; Xi FM; Wang JY; Yin Y; Pei ZJ; Zhao FQ
    Ying Yong Sheng Tai Xue Bao; 2019 Aug; 30(8):2803-2812. PubMed ID: 31418206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of carbon markets and subsidies on carbon capture and storage retrofitting of existing coal-fired units in China.
    Li K; Yang J; Wei Y
    J Environ Manage; 2023 Jan; 326(Pt B):116824. PubMed ID: 36442336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes.
    Chou CP; Chiu CH; Chang TC; Hsi HC
    J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coal with Carbon Capture and Sequestration is not as Land Use Efficient as Solar Photovoltaic Technology for Climate Neutral Electricity Production.
    Groesbeck JG; Pearce JM
    Sci Rep; 2018 Sep; 8(1):13476. PubMed ID: 30194324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A decision analysis model for reducing carbon emission from coal-fired power plants and its compensatory units.
    Kumari S; Bera S
    J Environ Manage; 2022 Jan; 301():113829. PubMed ID: 34592669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developed compositional source profile and estimated emissions of condensable particulate matter from coal-fired power plants: A case study of Yantai, China.
    Tong H; Wang Y; Tao S; Huang L; Jiang S; Bian J; Chen N; Kasemsan M; Yin H; Huang C; Chen H; Zhang K; Li L
    Sci Total Environ; 2023 Apr; 869():161817. PubMed ID: 36708842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.