These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36157856)

  • 41. The effect of coal alternative fuel from municipal solid wastes employing hydrothermal carbonization on atmospheric pollutant emissions in Zimbabwe.
    Maqhuzu AB; Yoshikawa K; Takahashi F
    Sci Total Environ; 2019 Jun; 668():743-759. PubMed ID: 30865905
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Incorporating Health Cobenefits in Decision-Making for the Decommissioning of Coal-Fired Power Plants in China.
    Li J; Cai W; Li H; Zheng X; Zhang S; Cui X; Zhang Y; Cao C; Sun R; Wang C
    Environ Sci Technol; 2020 Nov; 54(21):13935-13943. PubMed ID: 33076654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.
    Tian H; Wang Y; Cheng K; Qu Y; Hao J; Xue Z; Chai F
    J Air Waste Manag Assoc; 2012 May; 62(5):576-86. PubMed ID: 22696807
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.
    Sathre R; Masanet E
    Environ Sci Technol; 2012 Sep; 46(17):9768-76. PubMed ID: 22857130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distribution and emissions of trace elements in coal-fired power plants after ultra-low emission retrofitting.
    Han D; Wu Q; Wang S; Xu L; Duan L; Wen M; Li G; Li Z; Tang Y; Liu K
    Sci Total Environ; 2021 Feb; 754():142285. PubMed ID: 33254930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Case study on incentive mechanism of energy efficiency retrofit in coal-fueled power plant in China.
    Yuan D; Guo X; Cao Y; He L; Wang J; Xi B; Li J; Ma W; Zhang M
    ScientificWorldJournal; 2012; 2012():841636. PubMed ID: 23365532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-carbon electricity generation-based dynamic equilibrium strategy for carbon dioxide emissions reduction in the coal-fired power enterprise.
    Xu J; Feng Q; Lv C; Huang Q
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36732-36753. PubMed ID: 31741269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strategic Carbon Dioxide Infrastructure to Achieve a Low-Carbon Power Sector in the Midwestern and South-Central United States.
    Tao Y; Edwards RWJ; Mauzerall DL; Celia MA
    Environ Sci Technol; 2021 Nov; 55(22):15013-15024. PubMed ID: 34714051
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analyzing the spatio-temporal variation of the CO
    Zhang W; Wang J; Xu Y; Wang C; Streets DG
    Sci Total Environ; 2022 Jan; 803():150083. PubMed ID: 34525679
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The environmental effect of capacity utilization in thermal power plants: evidence from interprovincial carbon emissions in China.
    Wang Y; Chen J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30399-30412. PubMed ID: 31440971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Variation characteristics of final size-segregated PM emissions from ultralow emission coal-fired power plants in China.
    Wu B; Bai X; Liu W; Zhu C; Hao Y; Lin S; Liu S; Luo L; Liu X; Zhao S; Hao J; Tian H
    Environ Pollut; 2020 Apr; 259():113886. PubMed ID: 31918144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.
    Hertwich EG; Gibon T; Bouman EA; Arvesen A; Suh S; Heath GA; Bergesen JD; Ramirez A; Vega MI; Shi L
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6277-82. PubMed ID: 25288741
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of the Promoting the Big and Quashing the Small Policy on pollutants from a coal power supply chain perspective.
    Wang W; Yang F; Guo Y; Chen B; Zou X; Zhou S; Li J
    J Environ Manage; 2022 Jul; 313():114960. PubMed ID: 35381528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. North Carolina's Changing Energy Generation Profile and Reductions in Key Air Pollutants, 2000-2019.
    Wilkie AA; Richardson DB; Luben TJ; Serre ML; Woods CG; Daniels JL
    N C Med J; 2022; 83(4):304-310. PubMed ID: 35817451
    [No Abstract]   [Full Text] [Related]  

  • 55. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective.
    Wang C; Zhang L; Zhou P; Chang Y; Zhou D; Pang M; Yin H
    J Environ Manage; 2019 Sep; 246():758-767. PubMed ID: 31228689
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Utilization of Water Utility Lime Sludge for Flue Gas Desulfurization in Coal-Fired Power Plants: Part I. Supply-Demand Evaluation and Life Cycle Assessment.
    Salih H; Patterson C; Li J; Mock J; Dastgheib SA
    Energy Fuels; 2018 Jun; 32(6):6627-6633. PubMed ID: 30078938
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of carbon footprint effect of renewable power plants regarding energy production: A case study of a city in Turkey.
    Kerem A
    J Air Waste Manag Assoc; 2022 Mar; 72(3):294-307. PubMed ID: 35030055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The environmental and economic sustainability of carbon capture and storage.
    Hardisty PE; Sivapalan M; Brooks P
    Int J Environ Res Public Health; 2011 May; 8(5):1460-77. PubMed ID: 21655130
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Green policy under the competitive electricity market: An agent-based model simulation in Shanghai.
    Zhou Y; Shi Z; Wu L
    J Environ Manage; 2021 Dec; 299():113501. PubMed ID: 34428674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sunsetting coal power in China.
    Kahrl F; Lin J; Liu X; Hu J
    iScience; 2021 Sep; 24(9):102939. PubMed ID: 34458696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.