These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36158114)

  • 1. Research on Robotic Humanoid Venipuncture Method Based on Biomechanical Model.
    He T; Guo C; Liu H; Jiang L
    J Intell Robot Syst; 2022; 106(1):31. PubMed ID: 36158114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A venipuncture robot with decoupled position and attitude guided by near-infrared vision and force feedback.
    He T; Guo C; Liu H; Jiang L
    Int J Med Robot; 2023 Aug; 19(4):e2512. PubMed ID: 36809654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The System Design and Evaluation of a 7-DOF Image-Guided Venipuncture Robot.
    Balter ML; Chen AI; Maguire TJ; Yarmush ML
    IEEE Trans Robot; 2015 Aug; 31(4):1044-1053. PubMed ID: 26257588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Puncture site decision method for venipuncture robot based on near-infrared vision and multiobjective optimization.
    He T; Guo C; Jiang L
    Sci China Technol Sci; 2023; 66(1):13-23. PubMed ID: 36570559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.
    Zhao J; Li W; Mao X; Li M
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthropomorphism of Robots: Study of Appearance and Agency.
    Crowell CR; Deska JC; Villano M; Zenk J; Roddy JT
    JMIR Hum Factors; 2019 May; 6(2):e12629. PubMed ID: 31094323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carved Turn Control with Gate Vision Recognition of a Humanoid Robot for Giant Slalom Skiing on Ski Slopes.
    Park C; Kim B; Kim Y; Eum Y; Song H; Yoon D; Moon J; Han J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
    Zhao J; Li W; Li M
    PLoS One; 2015; 10(11):e0142168. PubMed ID: 26562524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facial Expression Realization of Humanoid Robot Head and Strain-Based Anthropomorphic Evaluation of Robot Facial Expressions.
    Yan Z; Song Y; Zhou R; Wang L; Wang Z; Dai Z
    Biomimetics (Basel); 2024 Feb; 9(3):. PubMed ID: 38534807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A brain-inspired intention prediction model and its applications to humanoid robot.
    Zhao Y; Zeng Y
    Front Neurosci; 2022; 16():1009237. PubMed ID: 36340762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facing the FACS-Using AI to Evaluate and Control Facial Action Units in Humanoid Robot Face Development.
    Auflem M; Kohtala S; Jung M; Steinert M
    Front Robot AI; 2022; 9():887645. PubMed ID: 35774595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time Needle Steering in Response to Rolling Vein Deformation by a 9-DOF Image-Guided Autonomous Venipuncture Robot.
    Chen AI; Balter ML; Maguire TJ; Yarmush ML
    Rep U S; 2015; 2015():2633-2638. PubMed ID: 26779381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User Responses to a Humanoid Robot Observed in Real Life, Virtual Reality, 3D and 2D.
    Mara M; Stein JP; Latoschik ME; Lugrin B; Schreiner C; Hostettler R; Appel M
    Front Psychol; 2021; 12():633178. PubMed ID: 33935883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can we talk to robots? Ten-month-old infants expected interactive humanoid robots to be talked to by persons.
    Arita A; Hiraki K; Kanda T; Ishiguro H
    Cognition; 2005 Apr; 95(3):B49-57. PubMed ID: 15788157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Kinematic Control of a Robotic Venipuncture Device Based on Stereo Vision, Ultrasound, and Force Guidance.
    Balter ML; Chen AI; Maguire TJ; Yarmush ML
    IEEE Trans Ind Electron; 2017 Feb; 64(2):1626-1635. PubMed ID: 28111492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Balancing of Humanoid Robot with Proprioceptive Actuation: Systematic Design of Algorithm, Software, and Hardware.
    Xie Y; Wang J; Dong H; Ren X; Huang L; Zhao M
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The eMOSAIC model for humanoid robot control.
    Sugimoto N; Morimoto J; Hyon SH; Kawato M
    Neural Netw; 2012 May; 29-30():8-19. PubMed ID: 22366503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.
    Alexandrov AV; Lippi V; Mergner T; Frolov AA; Hettich G; Husek D
    Front Neurorobot; 2017; 11():22. PubMed ID: 28487646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Friction-Driven Strategy for Agile Steering Wheel Manipulation by Humanoid Robots.
    Cai Z; Zhu X; Gergondet P; Chen X; Yu Z
    Cyborg Bionic Syst; 2023; 4():0064. PubMed ID: 38435676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.