These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36158602)
1. Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning. Zheng C; Li G; Hayashibe M Front Robot AI; 2022; 9():957931. PubMed ID: 36158602 [TBL] [Abstract][Full Text] [Related]
2. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning. Bing Z; Lemke C; Cheng L; Huang K; Knoll A Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929 [TBL] [Abstract][Full Text] [Related]
3. Soft-body dynamics induces energy efficiency in undulatory swimming: A deep learning study. Li G; Shintake J; Hayashibe M Front Robot AI; 2023; 10():1102854. PubMed ID: 36845333 [TBL] [Abstract][Full Text] [Related]
4. Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns. Kelasidi E; Liljebäck P; Pettersen KY; Gravdahl JT Robotics Biomim; 2015; 2():8. PubMed ID: 26705512 [TBL] [Abstract][Full Text] [Related]
5. Deep Reinforcement Learning with Gait Mode Specification for Quadrupedal Trot-Gallop Energetic Analysis. Chai J; Owaki D; Hayashibe M Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4583-4587. PubMed ID: 34892236 [TBL] [Abstract][Full Text] [Related]
6. Perception-Action Coupling Target Tracking Control for a Snake Robot via Reinforcement Learning. Bing Z; Lemke C; Morin FO; Jiang Z; Cheng L; Huang K; Knoll A Front Neurorobot; 2020; 14():591128. PubMed ID: 33192441 [TBL] [Abstract][Full Text] [Related]
7. Multimodal bipedal locomotion generation with passive dynamics Koseki S; Kutsuzawa K; Owaki D; Hayashibe M Front Neurorobot; 2022; 16():1054239. PubMed ID: 36756534 [TBL] [Abstract][Full Text] [Related]
8. A Reinforcement Learning-Based Strategy of Path Following for Snake Robots with an Onboard Camera. Liu L; Guo X; Fang Y Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560233 [TBL] [Abstract][Full Text] [Related]
9. A Survey on Reinforcement Learning Methods in Bionic Underwater Robots. Tong R; Feng Y; Wang J; Wu Z; Tan M; Yu J Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37092420 [TBL] [Abstract][Full Text] [Related]
10. Planar maneuvering control of underwater snake robots using virtual holonomic constraints. Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895 [TBL] [Abstract][Full Text] [Related]
11. Gait Generation Method of Snake Robot Based on Main Characteristic Curve Fitting. Tang C; Sun L; Zhou G; Shu X; Tang H; Wu H Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975335 [TBL] [Abstract][Full Text] [Related]
12. Controlling the Solo12 quadruped robot with deep reinforcement learning. Aractingi M; Léziart PA; Flayols T; Perez J; Silander T; Souères P Sci Rep; 2023 Jul; 13(1):11945. PubMed ID: 37488193 [TBL] [Abstract][Full Text] [Related]
13. Underwater Crawling Robot With Hydraulic Soft Actuators. Tan Q; Chen Y; Liu J; Zou K; Yi J; Liu S; Wang Z Front Robot AI; 2021; 8():688697. PubMed ID: 34513936 [TBL] [Abstract][Full Text] [Related]
14. Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots. Kelasidi E; Moe S; Pettersen KY; Kohl AM; Liljebäck P; Gravdahl JT Front Robot AI; 2019; 6():57. PubMed ID: 33501072 [TBL] [Abstract][Full Text] [Related]
15. Soft Rod-Climbing Robot Inspired by Winding Locomotion of Snake. Liao B; Zang H; Chen M; Wang Y; Lang X; Zhu N; Yang Z; Yi Y Soft Robot; 2020 Aug; 7(4):500-511. PubMed ID: 31986109 [TBL] [Abstract][Full Text] [Related]
16. S-shaped rolling gait designed using curve transformations of a snake robot for climbing on a bifurcated pipe. Lu J; Tang C; Hu E; Li Z Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38507791 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Bipedal Locomotion Based on Reinforcement Learning and Heuristics. Wang Z; Wei W; Xie A; Zhang Y; Wu J; Zhu Q Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296041 [TBL] [Abstract][Full Text] [Related]
18. Task space adaptation via the learning of gait controllers of magnetic soft millirobots. Demir SO; Culha U; Karacakol AC; Pena-Francesch A; Trimpe S; Sitti M Int J Rob Res; 2021 Dec; 40(12-14):1331-1351. PubMed ID: 35481277 [TBL] [Abstract][Full Text] [Related]
19. LORM: a novel reinforcement learning framework for biped gait control. Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792 [TBL] [Abstract][Full Text] [Related]
20. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot. Choi J Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]