These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36158882)
1. Proteochemometric Method for pIC50 Prediction of Flaviviridae. Singh D; Mahadik A; Surana S; Arora P Biomed Res Int; 2022; 2022():7901791. PubMed ID: 36158882 [TBL] [Abstract][Full Text] [Related]
2. Prediction for understanding the effectiveness of antiviral peptides. Nath A Comput Biol Chem; 2021 Dec; 95():107588. PubMed ID: 34655913 [TBL] [Abstract][Full Text] [Related]
3. AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches. Pang Y; Yao L; Jhong JH; Wang Z; Lee TY Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34279599 [TBL] [Abstract][Full Text] [Related]
4. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model. Akbar S; Raza A; Zou Q BMC Bioinformatics; 2024 Mar; 25(1):102. PubMed ID: 38454333 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical and sequence determinants of antiviral peptides. Nath A Biol Futur; 2023 Dec; 74(4):489-506. PubMed ID: 37889451 [TBL] [Abstract][Full Text] [Related]
6. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules. Paricharak S; Cortés-Ciriano I; IJzerman AP; Malliavin TE; Bender A J Cheminform; 2015; 7():15. PubMed ID: 25926892 [TBL] [Abstract][Full Text] [Related]
7. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751 [TBL] [Abstract][Full Text] [Related]
8. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. Guan J; Yao L; Xie P; Chung CR; Huang Y; Chiang YC; Lee TY Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706321 [TBL] [Abstract][Full Text] [Related]
9. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance. Chowdhury AS; Reehl SM; Kehn-Hall K; Bishop B; Webb-Robertson BM Sci Rep; 2020 Nov; 10(1):19260. PubMed ID: 33159146 [TBL] [Abstract][Full Text] [Related]
10. In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review. Charoenkwan P; Anuwongcharoen N; Nantasenamat C; Hasan MM; Shoombuatong W Curr Pharm Des; 2021; 27(18):2180-2188. PubMed ID: 33138759 [TBL] [Abstract][Full Text] [Related]
11. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. Sukmarini L Molecules; 2022 Apr; 27(9):. PubMed ID: 35565968 [TBL] [Abstract][Full Text] [Related]
12. The recent progress in proteochemometric modelling: focusing on target descriptors, cross-term descriptors and application scope. Qiu T; Qiu J; Feng J; Wu D; Yang Y; Tang K; Cao Z; Zhu R Brief Bioinform; 2017 Jan; 18(1):125-136. PubMed ID: 26873661 [TBL] [Abstract][Full Text] [Related]
13. AVPpred: collection and prediction of highly effective antiviral peptides. Thakur N; Qureshi A; Kumar M Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W199-204. PubMed ID: 22638580 [TBL] [Abstract][Full Text] [Related]
14. AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Qureshi A; Thakur N; Tandon H; Kumar M Nucleic Acids Res; 2014 Jan; 42(Database issue):D1147-53. PubMed ID: 24285301 [TBL] [Abstract][Full Text] [Related]
15. Deep-AVPpred: Artificial Intelligence Driven Discovery of Peptide Drugs for Viral Infections. Sharma R; Shrivastava S; Singh SK; Kumar A; Singh AK; Saxena S IEEE J Biomed Health Inform; 2022 Oct; 26(10):5067-5074. PubMed ID: 34822333 [TBL] [Abstract][Full Text] [Related]
16. FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses. Cao R; Hu W; Wei P; Ding Y; Bin Y; Zheng C Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37861174 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial Peptides as Potential Antiviral Factors in Insect Antiviral Immune Response. Feng M; Fei S; Xia J; Labropoulou V; Swevers L; Sun J Front Immunol; 2020; 11():2030. PubMed ID: 32983149 [TBL] [Abstract][Full Text] [Related]
18. An updated evolutionary study of Flaviviridae NS3 helicase and NS5 RNA-dependent RNA polymerase reveals novel invariable motifs as potential pharmacological targets. Papageorgiou L; Loukatou S; Sofia K; Maroulis D; Vlachakis D Mol Biosyst; 2016 Jun; 12(7):2080-93. PubMed ID: 26864387 [TBL] [Abstract][Full Text] [Related]
19. How Consistent are Publicly Reported Cytotoxicity Data? Large-Scale Statistical Analysis of the Concordance of Public Independent Cytotoxicity Measurements. Cortés-Ciriano I; Bender A ChemMedChem; 2016 Jan; 11(1):57-71. PubMed ID: 26541361 [TBL] [Abstract][Full Text] [Related]
20. 3DDPDs: describing protein dynamics for proteochemometric bioactivity prediction. A case for (mutant) G protein-coupled receptors. Gorostiola González M; van den Broek RL; Braun TGM; Chatzopoulou M; Jespers W; IJzerman AP; Heitman LH; van Westen GJP J Cheminform; 2023 Aug; 15(1):74. PubMed ID: 37641107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]