These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36159601)

  • 1. Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals.
    Simoes F; Colston R; Rosa-Fernandes C; Vale P; Stephenson T; Soares A
    Environ Sci Ecotechnol; 2020 Jul; 3():100052. PubMed ID: 36159601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors.
    Simoes F; Vale P; Stephenson T; Soares A
    Environ Technol; 2018 Sep; 39(17):2278-2287. PubMed ID: 29187072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological recovery of phosphorus from waste activated sludge via alkaline fermentation and struvite biomineralization by Brevibacterium antiquum.
    Coşgun S; Kara B; Kunt B; Hür C; Semerci N
    Biodegradation; 2022 Apr; 33(2):195-206. PubMed ID: 35142960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of pH on the biological struvite production in digested sludge dewatering liquors.
    Simoes F; Vale P; Stephenson T; Soares A
    Sci Rep; 2018 May; 8(1):7225. PubMed ID: 29740081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of struvite biomineralization in municipal wastewater.
    Leng Y; Soares A
    Sci Total Environ; 2021 Dec; 799():149261. PubMed ID: 34371415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively.
    Sniatala B; Kurniawan TA; Sobotka D; Makinia J; Othman MHD
    Sci Total Environ; 2023 Jan; 856(Pt 2):159283. PubMed ID: 36208738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using mass struvite precipitation to remove recalcitrant nutrients and micropollutants from anaerobic digestion dewatering centrate.
    Abel-Denee M; Abbott T; Eskicioglu C
    Water Res; 2018 Apr; 132():292-300. PubMed ID: 29334648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability.
    Muys M; Phukan R; Brader G; Samad A; Moretti M; Haiden B; Pluchon S; Roest K; Vlaeminck SE; Spiller M
    Sci Total Environ; 2021 Feb; 756():143726. PubMed ID: 33307495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants.
    Martí N; Barat R; Seco A; Pastor L; Bouzas A
    J Environ Manage; 2017 Jul; 196():340-346. PubMed ID: 28324850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient recovery from the digestate obtained by rumen fluid enhanced anaerobic co-digestion of sewage sludge and cattail: Precipitation by MgCl
    Petrovič A; Simonič M; Čuček L
    J Environ Manage; 2021 Jul; 290():112593. PubMed ID: 33892236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the mechanisms of biological struvite biomineralisation.
    Leng Y; Soares A
    Chemosphere; 2021 Oct; 281():130986. PubMed ID: 34289630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of divalent cation complexation on anaerobically digested enhanced biological phosphorus removal sludge dewatering performance.
    Mangrum CRL; Jenkins D
    Water Environ Res; 2020 May; 92(5):677-688. PubMed ID: 31633854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells.
    Yuan P; Kim Y
    Biotechnol Biofuels; 2017; 10():70. PubMed ID: 28331546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of direct waste-activated sludge dewatering benefits and costs in a water resource recovery facility.
    Mentzer C; Drinkwater M; Pagilla KR
    Water Environ Res; 2021 Dec; 93(12):2998-3010. PubMed ID: 34606145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fertilizer demand and potential supply through nutrient recovery from organic waste digestate in California.
    Orner KD; Smith SJ; Breunig HM; Scown CD; Nelson KL
    Water Res; 2021 Nov; 206():117717. PubMed ID: 34634641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the biochemical characteristics of struvite bio-mineralising microorganisms and their future in nutrient recovery.
    Leng Y; Colston R; Soares A
    Chemosphere; 2020 May; 247():125799. PubMed ID: 31951952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solutions to a combined problem of excessive hydrogen sulfide in biogas and struvite scaling.
    Charles W; Cord-Ruwisch R; Ho G; Costa M; Spencer P
    Water Sci Technol; 2006; 53(6):203-10. PubMed ID: 16749459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus recovery by struvite crystallization in WWTPs: influence of the sludge treatment line operation.
    Martí N; Pastor L; Bouzas A; Ferrer J; Seco A
    Water Res; 2010 Apr; 44(7):2371-9. PubMed ID: 20089291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams.
    Münch EV; Barr K
    Water Res; 2001 Jan; 35(1):151-9. PubMed ID: 11257869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of ammonia through struvite production using anaerobic digestate of piggery wastewater and leachate of sewage sludge ash.
    Kwon G; Kang J; Nam JH; Kim YO; Jahng D
    Environ Technol; 2018 Apr; 39(7):831-842. PubMed ID: 28355496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.