These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 36159861)

  • 21. Targeting the adenosine signaling pathway in macrophages for cancer immunotherapy.
    Yang H; Zhang Z; Zhao K; Zhang Y; Yin X; Zhu G; Wang Z; Yan X; Li X; He T; Wang K
    Hum Immunol; 2024 May; 85(3):110774. PubMed ID: 38521664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting CD73 with AB680 (Quemliclustat), a Novel and Potent Small-Molecule CD73 Inhibitor, Restores Immune Functionality and Facilitates Antitumor Immunity.
    Piovesan D; Tan JBL; Becker A; Banuelos J; Narasappa N; DiRenzo D; Zhang K; Chen A; Ginn E; Udyavar AR; Yin F; Paprcka SL; Purandare B; Park TW; Kimura N; Kalisiak J; Young SW; Powers JP; Schindler U; Sivick KE; Walters MJ
    Mol Cancer Ther; 2022 Jun; 21(6):948-959. PubMed ID: 35405741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The metabolic milieu in melanoma: Role of immune suppression by CD73/adenosine.
    Passarelli A; Tucci M; Mannavola F; Felici C; Silvestris F
    Tumour Biol; 2019 Apr; 42(4):1010428319837138. PubMed ID: 30957676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors?
    Nebot-Bral L; Coutzac C; Kannouche PL; Chaput N
    Bull Cancer; 2019 Feb; 106(2):105-113. PubMed ID: 30342749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insights into checkpoint inhibitor immunotherapy and its combined therapies in hepatocellular carcinoma: from mechanisms to clinical trials.
    Jin H; Qin S; He J; Xiao J; Li Q; Mao Y; Zhao L
    Int J Biol Sci; 2022; 18(7):2775-2794. PubMed ID: 35541908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coinhibitory Pathways in Immunotherapy for Cancer.
    Baumeister SH; Freeman GJ; Dranoff G; Sharpe AH
    Annu Rev Immunol; 2016 May; 34():539-73. PubMed ID: 26927206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting CTLA-4 in cancer: Is it the ideal companion for PD-1 blockade immunotherapy combinations?
    De Silva P; Aiello M; Gu-Trantien C; Migliori E; Willard-Gallo K; Solinas C
    Int J Cancer; 2021 Jul; 149(1):31-41. PubMed ID: 33252786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in the clinical development of immune checkpoint blockade therapy.
    Ghahremanloo A; Soltani A; Modaresi SMS; Hashemy SI
    Cell Oncol (Dordr); 2019 Oct; 42(5):609-626. PubMed ID: 31201647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.
    Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J
    J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory effect of adenosine on adaptive antitumor immunity and intervention strategies.
    Wang L; Zhang W; Zhang J; Zheng M; Pan X; Guo H; Ding L
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2023 Sep; 52(5):567-577. PubMed ID: 37916308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts.
    Wang Y; Zhang H; Liu C; Wang Z; Wu W; Zhang N; Zhang L; Hu J; Luo P; Zhang J; Liu Z; Peng Y; Liu Z; Tang L; Cheng Q
    J Hematol Oncol; 2022 Aug; 15(1):111. PubMed ID: 35978433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Treg-mediated acquired resistance to immune checkpoint inhibitors.
    Saleh R; Elkord E
    Cancer Lett; 2019 Aug; 457():168-179. PubMed ID: 31078738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging immunotherapy targets in lung cancer.
    Zhu HH; Feng Y; Hu XS
    Chin Med J (Engl); 2020 Oct; 133(20):2456-2465. PubMed ID: 32947361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma.
    Xing R; Gao J; Cui Q; Wang Q
    Front Immunol; 2021; 12():783236. PubMed ID: 34899747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New checkpoints in cancer immunotherapy.
    Ni L; Dong C
    Immunol Rev; 2017 Mar; 276(1):52-65. PubMed ID: 28258699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules.
    D'Arrigo P; Tufano M; Rea A; Vigorito V; Novizio N; Russo S; Romano MF; Romano S
    Curr Med Chem; 2020; 27(15):2402-2448. PubMed ID: 30398102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma.
    Kondo Y; Ohno T; Nishii N; Harada K; Yagita H; Azuma M
    Oral Oncol; 2016 Jun; 57():54-60. PubMed ID: 27208845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti-PD-1/anti-CTLA-4 immunotherapy.
    Liu HJ; Lizotte PH; Du H; Speranza MC; Lam HC; Vaughan S; Alesi N; Wong KK; Freeman GJ; Sharpe AH; Henske EP
    JCI Insight; 2018 Apr; 3(8):. PubMed ID: 29669930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Small molecular CD73 inhibitors: Recent progress and future perspectives.
    Ge GH; Wang QY; Zhang ZH; Zhang X; Guo S; Zhang TJ; Meng FH
    Eur J Med Chem; 2024 Jan; 264():116028. PubMed ID: 38086190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.