These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36159896)

  • 1. Deja Vu: semantics-aware recording and replay of high-speed eye tracking and interaction data to support cognitive studies of software engineering tasks-methodology and analyses.
    Zyrianov V; Peterson CS; Guarnera DT; Behler J; Weston P; Sharif B; Maletic JI
    Empir Softw Eng; 2022; 27(7):168. PubMed ID: 36159896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Open-source Software and Gaze Data Repositories for Performance Evaluation of Eye Tracking Systems.
    Kar A; Corcoran P
    Vision (Basel); 2019 Oct; 3(4):. PubMed ID: 31735856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of slippage on the data quality of head-worn eye trackers.
    Niehorster DC; Santini T; Hessels RS; Hooge ITC; Kasneci E; Nyström M
    Behav Res Methods; 2020 Jun; 52(3):1140-1160. PubMed ID: 31898290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time sharing of gaze data between multiple eye trackers-evaluation, tools, and advice.
    Nyström M; Niehorster DC; Cornelissen T; Garde H
    Behav Res Methods; 2017 Aug; 49(4):1310-1322. PubMed ID: 27743316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From lab-based studies to eye-tracking in virtual and real worlds: conceptual and methodological problems and solutions. Symposium 4 at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019.
    Hooge ITC; Hessels RS; Niehorster DC; Diaz GJ; Duchowski AT; Pelz JB
    J Eye Mov Res; 2019 Nov; 12(7):. PubMed ID: 33828764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is apparent fixational drift in eye-tracking data due to filters or eyeball rotation?
    Niehorster DC; Zemblys R; Holmqvist K
    Behav Res Methods; 2021 Feb; 53(1):311-324. PubMed ID: 32705655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What to expect from your remote eye-tracker when participants are unrestrained.
    Niehorster DC; Cornelissen THW; Holmqvist K; Hooge ITC; Hessels RS
    Behav Res Methods; 2018 Feb; 50(1):213-227. PubMed ID: 28205131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing gaze position signals and synthesizing noise during fixations in eye-tracking data.
    Niehorster DC; Zemblys R; Beelders T; Holmqvist K
    Behav Res Methods; 2020 Dec; 52(6):2515-2534. PubMed ID: 32472501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PyTrack: An end-to-end analysis toolkit for eye tracking.
    Ghose U; Srinivasan AA; Boyce WP; Xu H; Chng ES
    Behav Res Methods; 2020 Dec; 52(6):2588-2603. PubMed ID: 32500364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaze Information Channel in Cognitive Comprehension of Poster Reading.
    Hao Q; Sbert M; Ma L
    Entropy (Basel); 2019 Apr; 21(5):. PubMed ID: 33267158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-calibrating, camera-based eye tracker for the recording of rodent eye movements.
    Zoccolan D; Graham BJ; Cox DD
    Front Neurosci; 2010; 4():193. PubMed ID: 21152259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. eyeScrollR: A software method for reproducible mapping of eye-tracking data from scrollable web pages.
    Larigaldie N; Dreneva A; Orquin JL
    Behav Res Methods; 2024 Apr; 56(4):3380-3395. PubMed ID: 38347256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RemoteEye: An open-source high-speed remote eye tracker : Implementation insights of a pupil- and glint-detection algorithm for high-speed remote eye tracking.
    Hosp B; Eivazi S; Maurer M; Fuhl W; Geisler D; Kasneci E
    Behav Res Methods; 2020 Jun; 52(3):1387-1401. PubMed ID: 32212086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.
    Pratesi A; Cecchi F; Beani E; Sgandurra G; Cioni G; Laschi C; Dario P
    Biomed Eng Online; 2015 Sep; 14():83. PubMed ID: 26346053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time visuomotor behavior and electrophysiology recording setup for use with humans and monkeys.
    de Haan MJ; Brochier T; Grün S; Riehle A; Barthélemy FV
    J Neurophysiol; 2018 Aug; 120(2):539-552. PubMed ID: 29718806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye-Tracking Technology and the Dynamics of Natural Gaze Behavior in Sports: A Systematic Review of 40 Years of Research.
    Kredel R; Vater C; Klostermann A; Hossner EJ
    Front Psychol; 2017; 8():1845. PubMed ID: 29089918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Evaluation Strategies for Eye Gaze Estimation Systems with Quantitative Metrics and Visualizations.
    Kar A; Corcoran P
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30231547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel eye gaze tracking techniques under natural head movement.
    Zhu Z; Ji Q
    IEEE Trans Biomed Eng; 2007 Dec; 54(12):2246-60. PubMed ID: 18075041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eyeblink Detection in the Field: A Proof of Concept Study of Two Mobile Optical Eye-Trackers.
    Schweizer T; Wyss T; Gilgen-Ammann R
    Mil Med; 2022 Mar; 187(3-4):e404-e409. PubMed ID: 33564826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.